Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize
- URL: http://arxiv.org/abs/2407.10955v2
- Date: Tue, 16 Jul 2024 09:59:35 GMT
- Title: Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize
- Authors: Tong Zhang, Chris Junchi Li,
- Abstract summary: This paper revisits textsfROOT-SGD, an innovative method for optimization to bridge the gap between optimization and statistical efficiency.
The proposed method enhances the performance and reliability of textsfROOT-SGD by integrating a carefully designed emphdiminishing stepsize strategy.
- Score: 13.365997574848759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we revisit \textsf{ROOT-SGD}, an innovative method for stochastic optimization to bridge the gap between stochastic optimization and statistical efficiency. The proposed method enhances the performance and reliability of \textsf{ROOT-SGD} by integrating a carefully designed \emph{diminishing stepsize strategy}. This approach addresses key challenges in optimization, providing robust theoretical guarantees and practical benefits. Our analysis demonstrates that \textsf{ROOT-SGD} with diminishing achieves optimal convergence rates while maintaining computational efficiency. By dynamically adjusting the learning rate, \textsf{ROOT-SGD} ensures improved stability and precision throughout the optimization process. The findings of this study offer valuable insights for developing advanced optimization algorithms that are both efficient and statistically robust.
Related papers
- Adaptive Friction in Deep Learning: Enhancing Optimizers with Sigmoid and Tanh Function [0.0]
We introduce sigSignGrad and tanhSignGrad, two novel gradients that integrate adaptive friction coefficients.
Our theoretical analysis demonstrates the wide-ranging adjustment capability of the friction coefficient S.
Experiments on CIFAR-10, Mini-Image-Net using ResNet50 and ViT architectures confirm the superior performance our proposeds.
arXiv Detail & Related papers (2024-08-07T03:20:46Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
Reduced physical models of the system can be incorporated into the optimization process, accelerating it.
These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper.
Safety is a crucial criterion for online optimization methods such as Bayesian optimization.
arXiv Detail & Related papers (2023-12-12T13:59:26Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
We introduce a new framework based on the empirical probability density function of the loss's magnitude, termed the "gradient magnitude histogram"
We propose a novel algorithm using gradient magnitude histograms to automatically estimate a refined and accurate search space for the optimal safeguard.
arXiv Detail & Related papers (2023-11-20T04:34:19Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy [0.0]
The study employs single-objective optimization in a two-dimensional space and runs ADEDS on each of the benchmark functions with multiple iterations.
ADEDS consistently outperforms standard DE for a variety of optimization challenges, including functions with numerous local optima, plate-shaped, valley-shaped, stretched-shaped, and noisy functions.
arXiv Detail & Related papers (2023-10-02T10:05:41Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Mixed Strategies for Robust Optimization of Unknown Objectives [93.8672371143881]
We consider robust optimization problems, where the goal is to optimize an unknown objective function against the worst-case realization of an uncertain parameter.
We design a novel sample-efficient algorithm GP-MRO, which sequentially learns about the unknown objective from noisy point evaluations.
GP-MRO seeks to discover a robust and randomized mixed strategy, that maximizes the worst-case expected objective value.
arXiv Detail & Related papers (2020-02-28T09:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.