論文の概要: Adaptive Digital Twin and Communication-Efficient Federated Learning Network Slicing for 5G-enabled Internet of Things
- arxiv url: http://arxiv.org/abs/2407.10987v1
- Date: Sat, 22 Jun 2024 15:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:39:32.230492
- Title: Adaptive Digital Twin and Communication-Efficient Federated Learning Network Slicing for 5G-enabled Internet of Things
- Title(参考訳): 5G対応モノのインターネットのための適応型ディジタルツインと通信効率の良いフェデレーション学習ネットワークスライシング
- Authors: Daniel Ayepah-Mensah, Guolin Sun, Yu Pang, Wei Jiang,
- Abstract要約: ネットワークスライシングは、ネットワークリソースの効率的な使用と管理を通じて、増大する要求を満たすために、マルチサービスとリソース要求を区別した産業用IoTネットワークを可能にする。
次世代のIndustry 4.0は、物理システムを正確な意思決定のためにデジタルモデルにマッピングするデジタルツインを導入した。
提案手法では,まずグラフアテンションネットワークを用いて,ネットワークスライスのためのディジタルツイン環境を構築し,リアルタイムトラフィック分析,監視,需要予測を実現する。
- 参考スコア(独自算出の注目度): 8.11509914300497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network slicing enables industrial Internet of Things (IIoT) networks with multiservice and differentiated resource requirements to meet increasing demands through efficient use and management of network resources. Typically, the network slice orchestrator relies on demand forecasts for each slice to make informed decisions and maximize resource utilization. The new generation of Industry 4.0 has introduced digital twins to map physical systems to digital models for accurate decision-making. In our approach, we first use graph-attention networks to build a digital twin environment for network slices, enabling real-time traffic analysis, monitoring, and demand forecasting. Based on these predictions, we formulate the resource allocation problem as a federated multi-agent reinforcement learning problem and employ a deep deterministic policy gradient to determine the resource allocation policy while preserving the privacy of the slices. Our results demonstrate that the proposed approaches can improve the accuracy of demand prediction for network slices and reduce the communication overhead of dynamic network slicing.
- Abstract(参考訳): ネットワークスライシングは、ネットワークリソースの効率的な使用と管理を通じて、増大する要求を満たすために、マルチサービスとリソース要求を区別した産業用IoTネットワークを可能にする。
通常、ネットワークスライスオーケストレータは、各スライスに対する需要予測に依存して、情報的決定を行い、リソース利用を最大化する。
次世代のIndustry 4.0は、物理システムを正確な意思決定のためにデジタルモデルにマッピングするデジタルツインを導入した。
提案手法では,まずグラフアテンションネットワークを用いて,ネットワークスライスのためのディジタルツイン環境を構築し,リアルタイムトラフィック分析,監視,需要予測を実現する。
これらの予測に基づいて、資源配分問題を連合型多エージェント強化学習問題として定式化し、資源配分政策を決定するために、スライスのプライバシを保ちながら、深い決定論的政策勾配を用いる。
提案手法は,ネットワークスライスに対する需要予測の精度を向上し,動的ネットワークスライシングの通信オーバーヘッドを低減できることを示す。
関連論文リスト
- Cellular Traffic Prediction Using Online Prediction Algorithms [5.416701003120508]
本稿では,リアルタイムシナリオにおけるセルラーネットワークトラフィック予測におけるライブ予測アルゴリズムの有効性について検討する。
機械学習モデルに2つのライブ予測アルゴリズムを適用し,その1つは最近提案されたFast LiveStream Prediction (FLSP)アルゴリズムである。
本研究は,従来のオンライン予測アルゴリズムと比較して,FLSPアルゴリズムが非同期データレポートに必要な帯域幅を半減できることを明らかにする。
論文 参考訳(メタデータ) (2024-05-08T17:36:14Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - Digital Twin-Enhanced Deep Reinforcement Learning for Resource
Management in Networks Slicing [46.65030115953947]
本稿では,デジタルツインと強化学習エージェントからなるフレームワークを提案する。
具体的には、歴史的データとニューラルネットワークを用いて、実環境の状態変動則をシミュレートするデジタルツインモデルを構築することを提案する。
また、このフレームワークをオフラインで強化学習に拡張し、歴史的データのみに基づいたインテリジェントな意思決定にソリューションを利用できるようにします。
論文 参考訳(メタデータ) (2023-11-28T15:25:14Z) - Fault Detection in Telecom Networks using Bi-level Federated Graph
Neural Networks [0.0]
テレコムネットワークの複雑さと多様性は、メンテナンスと運用の努力に負担を掛けている。
厳格なセキュリティとプライバシ要件は、モバイルオペレータがネットワークデータを活用する上での課題である。
本稿では,二値グラフニューラルネットワークの異常検出と診断モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T13:23:54Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
デバイス間通信(D2D)を用いたマルチチャネルセルシステムにおいて,リソース割り当ての最適化のためのフレームワークを提案する。
任意のチャネル条件に対する最適な資源配分戦略をディープニューラルネットワーク(DNN)モデルにより近似する深層学習(DL)フレームワークを提案する。
シミュレーションの結果,提案手法のリアルタイム性能を低速で実現できることが確認された。
論文 参考訳(メタデータ) (2020-11-25T14:19:23Z) - Reinforcement Learning for Dynamic Resource Optimization in 5G Radio
Access Network Slicing [3.509171590450989]
本稿では,5G無線スライシングのための動的資源配分のための強化学習ソリューションを提案する。
その結果、強化学習は、筋電図、ランダム、そして最初に提供されるソリューションと比較して、5Gネットワークユーティリティに大きな改善をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-09-14T17:10:17Z) - Dynamic Graph Neural Network for Traffic Forecasting in Wide Area
Networks [1.0934800950965335]
我々は,マルチステップネットワークトラフィック予測のための非自動グラフベースニューラルネットワークを開発した。
我々は,米国エネルギー省の専用科学ネットワークESnetの実際のトラフィックに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2020-08-28T17:47:11Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。