論文の概要: Discrete Diffusion Language Model for Long Text Summarization
- arxiv url: http://arxiv.org/abs/2407.10998v1
- Date: Tue, 25 Jun 2024 09:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:39:32.139740
- Title: Discrete Diffusion Language Model for Long Text Summarization
- Title(参考訳): 長文要約のための離散拡散言語モデル
- Authors: Do Huu Dat, Do Duc Anh, Anh Tuan Luu, Wray Buntine,
- Abstract要約: 本稿では,トランスフォーマーのバックボーンが長いシーケンスを効果的に扱えるような,セマンティック・アウェア・ノーミング・プロセスを提案する。
提案手法は,Gigaword,CNN/DailyMail,Arxivの3つのベンチマーク要約データセットに対して,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 19.267738861590487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While diffusion models excel at conditional generating high-quality images, prior works in discrete diffusion models were not evaluated on conditional long-text generation. In this work, we address the limitations of prior discrete diffusion models for conditional long-text generation, particularly in long sequence-to-sequence tasks such as abstractive summarization. Despite fast decoding speeds compared to autoregressive methods, previous diffusion models failed on the abstractive summarization task due to the incompatibility between the backbone architectures and the random noising process. To overcome these challenges, we introduce a novel semantic-aware noising process that enables Transformer backbones to handle long sequences effectively. Additionally, we propose CrossMamba, an adaptation of the Mamba model to the encoder-decoder paradigm, which integrates seamlessly with the random absorbing noising process. Our approaches achieve state-of-the-art performance on three benchmark summarization datasets: Gigaword, CNN/DailyMail, and Arxiv, outperforming existing discrete diffusion models on ROUGE metrics as well as possessing much faster speed in inference compared to autoregressive models.
- Abstract(参考訳): 拡散モデルは高品質な画像を生成する条件下では優れるが、離散拡散モデルにおける先行的な研究は条件付き長文生成では評価されなかった。
本研究では、特に抽象的な要約のような長いシーケンス・ツー・シーケンスタスクにおいて、条件付き長文生成のための事前離散拡散モデルの限界に対処する。
自己回帰法と比較して高速な復号化速度にもかかわらず、バックボーンアーキテクチャとランダムなノイズ発生過程の不整合のため、従来の拡散モデルは抽象的な要約タスクでは失敗する。
これらの課題を克服するために、Transformerのバックボーンが長いシーケンスを効果的に処理できる新しい意味認識ノーミングプロセスを導入する。
さらに,Mambaモデルのエンコーダ・デコーダパラダイムへの適応であるCrossMambaを提案する。
提案手法は,Gigaword,CNN/DailyMail,Arxivの3つのベンチマーク要約データセット上での最先端性能を実現し,ROUGEメトリクス上で既存の離散拡散モデルよりも優れており,自動回帰モデルに比べて推論速度がはるかに速い。
関連論文リスト
- LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
我々は拡散モデルを再検討し、全体論的文脈モデリングと並列復号化の能力を強調した。
本稿では,分割BERTを用いた新しいアーキテクチャLaDiCを導入し,キャプション専用のラテント空間を創出する。
LaDiCは、38.2 BLEU@4と126.2 CIDErのMSデータセット上で拡散ベースのメソッドの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-16T17:47:16Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
離散データ生成のための高速化された逆サンプリングを許容する離散非マルコフ拡散モデルを提案する。
提案手法は, ニューラルネットワークに対する関数評価の回数を大幅に削減し, サンプリング処理を高速化する。
論文 参考訳(メタデータ) (2023-12-14T18:14:11Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
本稿では,潜在意味の拡散と自己回帰生成を組み合わせ,流動的なテキストを生成するモデルであるPLANNERを提案する。
意味生成, テキスト補完, 要約の結果は, 高品質な長文を生成する上での有効性を示す。
論文 参考訳(メタデータ) (2023-06-05T01:36:39Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LMは言語モデリングのための新しい拡散モデルであり、言語の言語的特徴に触発されている。
具体的には,テキストデータのノイズを改善するために,戦略的ソフトマスキングによってテキストに劣化を加える言語情報処理を設計する。
我々は,我々のMasked-Diffuse LMが,高効率の最先端拡散モデルよりも優れた生成品質を達成できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:58:42Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
本研究では,拡散モデルを用いてシーケンス・ツー・シーケンスのテキスト生成を行う。
シーケンス・ツー・シーケンス生成のためのテキスト拡散モデルであるSeqDiffuSeqを提案する。
実験結果は、テキストの品質と推論時間の観点から、シーケンス・ツー・シーケンス生成の優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-20T15:16:24Z) - Diffusion Glancing Transformer for Parallel Sequence to Sequence
Learning [52.72369034247396]
モーダリティ拡散プロセスと残差グランシングサンプリングを併用した拡散グランシング変換器を提案する。
DIFFGLATは、自己回帰モデルと非自己回帰モデルの両方と比較して、高速な復号速度を維持しながら、より優れた生成精度を実現する。
論文 参考訳(メタデータ) (2022-12-20T13:36:25Z) - Symbolic Music Generation with Diffusion Models [4.817429789586127]
本論文では,前訓練された可変オートエンコーダの連続潜空間における離散領域をパラメータ化することにより,連続データに対する拡散モデルを訓練する手法を提案する。
同じ連続埋め込み上で動作する自己回帰型言語モデルと比較して,強い無条件生成とポストホック条件付インフィル結果を示す。
論文 参考訳(メタデータ) (2021-03-30T05:48:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。