論文の概要: TALEC: Teach Your LLM to Evaluate in Specific Domain with In-house Criteria by Criteria Division and Zero-shot Plus Few-shot
- arxiv url: http://arxiv.org/abs/2407.10999v1
- Date: Tue, 25 Jun 2024 10:02:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:39:32.137156
- Title: TALEC: Teach Your LLM to Evaluate in Specific Domain with In-house Criteria by Criteria Division and Zero-shot Plus Few-shot
- Title(参考訳): talEC: 社内基準による特定のドメインの評価をLLMに教える
- Authors: Kaiqi Zhang, Shuai Yuan, Honghan Zhao,
- Abstract要約: 本稿では,モデルに基づく評価手法 TALEC を提案する。
ユーザは自分の評価基準を柔軟に設定でき、インコンテキストラーニング(ICL)を使って審査員にこれらの評価基準を教えることができる。
TALECは人間の嗜好を正確に反映する強力な能力を示し、人間の判断と80%以上の相関を達成している。
- 参考スコア(独自算出の注目度): 2.186726107112913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of large language models (LLM), the evaluation of LLM becomes increasingly important. Measuring text generation tasks such as summarization and article creation is very difficult. Especially in specific application domains (e.g., to-business or to-customer service), in-house evaluation criteria have to meet not only general standards (correctness, helpfulness and creativity, etc.) but also specific needs of customers and business security requirements at the same time, making the evaluation more difficult. So far, the evaluation of LLM in business scenarios has mainly relied on manual, which is expensive and time-consuming. In this paper, we propose a model-based evaluation method: TALEC, which allows users to flexibly set their own evaluation criteria, and uses in-context learning (ICL) to teach judge model these in-house criteria. In addition, we try combining zero-shot and few-shot to make the judge model focus on more information. We also propose a prompt paradigm and an engineering approach to adjust and iterate the shots ,helping judge model to better understand the complex criteria. We then compare fine-tuning with ICL, finding that fine-tuning can be replaced by ICL. TALEC demonstrates a strong capability to accurately reflect human preferences and achieves a correlation of over 80% with human judgments, outperforming even the inter-human correlation in some tasks. The code is released in https://github.com/zlkqz/auto_eval
- Abstract(参考訳): 大規模言語モデル (LLM) の急速な発展に伴い, LLM の評価はますます重要になっている。
要約や記事作成といったテキスト生成タスクの計測は非常に困難である。
特に、特定のアプリケーションドメイン(例えば、to-businessやto-customerサービス)では、社内評価基準は一般的な基準(正確性、有用性、クリエイティビティなど)だけでなく、顧客のニーズとビジネスのセキュリティ要件を同時に満たさなければならないため、評価がより困難になる。
これまでのところ、ビジネスシナリオにおけるLLMの評価は主に手作業に依存しており、それは高価で時間を要する。
本稿では,ユーザが自身の評価基準を柔軟に設定できるモデルベース評価手法TALECを提案する。
さらに、ゼロショットと少数ショットを組み合わせることで、審査員モデルがより多くの情報に集中できるようにする。
また、複雑な基準をよりよく理解するために、ショットの調整と反復を行うためのプロンプトパラダイムとエンジニアリングアプローチを提案する。
次に、細調整をICLと比較し、細調整をICLに置き換えることが可能であることを確かめる。
TALECは、人間の嗜好を正確に反映する強力な能力を示し、人間の判断と80%以上の相関を達成し、いくつかのタスクにおいて人間間の相関よりも優れています。
コードはhttps://github.com/zlkqz/auto_evalでリリースされる
関連論文リスト
- Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences [11.23629471911503]
EvalGenは、評価基準の生成とアサーションの実装において、ユーザに自動アシストを提供する。
質的研究は、EvalGenに対する全体的なサポートを見出すが、主観性と反復的なアライメントのプロセスを強調している。
ユーザはアウトプットを格付けする基準が必要ですが、アウトプットのグレードは、ユーザが基準を定義するのに役立つのです。
論文 参考訳(メタデータ) (2024-04-18T15:45:27Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - LLMCRIT: Teaching Large Language Models to Use Criteria [38.12026374220591]
本稿では,大規模言語モデル (LLM) がタスク実行に対する自然言語フィードバックの提供において,タスクの包括的基準を利用できるフレームワークを提案する。
特に,各基準に対する異なる記述タスクのガイドラインとコンテクスト内デモの構成から,半自動で基準を導出するモデル・イン・ザ・ループ・フレームワークを提案する。
その結果, 基準と実演を取り入れることによるきめ細かい効果を明らかにし, 基準をより効果的に活用するためのLLMの教え方に関する貴重な知見を提供することができた。
論文 参考訳(メタデータ) (2024-03-02T02:25:55Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
大規模言語モデル(LLM)の自己教師型評価のためのフレームワークを提案する。
閉書知識,毒性,長期文脈依存性を測定するための自己指導型評価戦略を実証する。
自己監督評価と人監督評価との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-06-23T17:59:09Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
我々は知識指向LLMアセスメントベンチマーク(KoLA)を構築した。
人間の認知を模倣して、知識関連能力の4段階の分類を形成し、19ドルのタスクをカバーします。
私たちは、LLMによって事前訓練されたコーパスであるウィキペディアと、継続的に収集された新興コーパスを使用して、目に見えないデータや進化する知識を扱う能力を評価します。
論文 参考訳(メタデータ) (2023-06-15T17:20:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。