論文の概要: RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
- arxiv url: http://arxiv.org/abs/2407.11005v2
- Date: Thu, 16 Jan 2025 10:05:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:08:23.136645
- Title: RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
- Title(参考訳): RAGBench: 検索拡張システムのための説明可能なベンチマーク
- Authors: Robert Friel, Masha Belyi, Atindriyo Sanyal,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、ユーザ向けチャットアプリケーションにおけるドメイン固有の知識の標準的なアーキテクチャパターンとなっている。
RAGBenchは、100kのサンプルからなる、最初の包括的な大規模RAGベンチマークデータセットである。
TRACe評価フレームワークは、すべてのRAGドメインに適用可能な説明可能かつ実行可能なRAG評価指標のセットである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) を利用したユーザ向けチャットアプリケーションにドメイン固有の知識を組み込むための標準アーキテクチャパターンとなっている。
RAGシステムは,(1)入力クエリに関連するコンテキスト情報に対してドメイン固有のコーパスを問合せする文書検索器と,(2)提供されたクエリとコンテキストに基づいて応答を生成するLCMとを特徴とする。
しかし、統一評価基準と注釈付きデータセットが欠如しているため、RAGシステムの総合評価は依然として課題である。
RAGBenchは、100kのサンプルからなる、最初の包括的な大規模RAGベンチマークデータセットである。
業界固有の5つのドメインと様々なRAGタスクタイプをカバーしている。
RAGBenchの例は、ユーザマニュアルのような業界のコーパスから派生したもので、特に業界アプリケーションに関係している。
さらに、TRACe評価フレームワークを、すべてのRAGドメインに適用可能な説明可能かつ実行可能なRAG評価指標のセットとして定式化する。
ラベル付きデータセットはhttps://huggingface.co/datasets/rungalileo/ragbench.orgで公開しています。
RAGBenchの説明可能なラベルは、RAGシステムの全体的な評価を促進し、プロダクションアプリケーションの継続的な改善のために実行可能なフィードバックを可能にする。
徹底的なベンチマークにより, LLMに基づくRAG評価手法は, RAG評価タスクにおいて, 微調整されたRoBERTaモデルとの競合に苦慮していることがわかった。
我々は既存のアプローチが不足している地域を特定し、RAG評価システムの進歩に向けたTRACeによるRAGBenchの導入を提案する。
関連論文リスト
- HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBenchは、RAGのパフォーマンスを厳格に評価するために設計された、人間ラベル付きマルチドメインベンチマークである。
情報探索行動に基づくタスクの階層化により、HawkBenchはRAGシステムが多様なユーザニーズにどのように適応するかを体系的に評価する。
論文 参考訳(メタデータ) (2025-02-19T06:33:39Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
金融分野において全方向自動RAGベンチマークであるOmniEvalを導入する。
我々のベンチマークは多次元評価フレームワークによって特徴づけられる。
実験では、広範囲なテストデータセットを含むOmniEvalの包括性を実証した。
論文 参考訳(メタデータ) (2024-12-17T15:38:42Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
本稿では,検索モジュールと生成モジュールの両方に対して,一連の診断指標を組み込んだ詳細な評価フレームワークであるRAGCheckerを提案する。
RAGCheckerは、他の評価指標よりも、人間の判断との相関が著しく優れている。
RAGCheckerのメトリクスは、より効果的なRAGシステムの開発において研究者や実践者を導くことができる。
論文 参考訳(メタデータ) (2024-08-15T10:20:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Evaluating Retrieval Quality in Retrieval-Augmented Generation [21.115495457454365]
従来のエンドツーエンド評価手法は計算コストが高い。
本稿では,検索リストの各文書をRAGシステム内の大規模言語モデルで個別に利用するeRAGを提案する。
eRAGは、ランタイムを改善し、エンドツーエンド評価の最大50倍のGPUメモリを消費する、大きな計算上のアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-04-21T21:22:28Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。