論文の概要: CharED: Character-wise Ensemble Decoding for Large Language Models
- arxiv url: http://arxiv.org/abs/2407.11009v1
- Date: Tue, 25 Jun 2024 22:35:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:29:47.743674
- Title: CharED: Character-wise Ensemble Decoding for Large Language Models
- Title(参考訳): Chared: 大規模言語モデルのための文字単位のアンサンブルデコーディング
- Authors: Kevin Gu, Eva Tuecke, Dmitriy Katz, Raya Horesh, David Alvarez-Melis, Mikhail Yurochkin,
- Abstract要約: 本稿では,複数の大規模言語モデルから出力を"出力する"ことを目的とした推論時アンサンブルアルゴリズムを提案する。
提案モデルでは,語彙,トークン化,モデルサイズに関わらず,複数のLLMの補完的強度を組み合わせることができる。
- 参考スコア(独自算出の注目度): 24.993790740335243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown remarkable potential for problem solving, with open source models achieving increasingly impressive performance on benchmarks measuring areas from logical reasoning to mathematical ability. Ensembling models can further improve capabilities across a variety of domains. However, conventional methods of combining models at inference time such as shallow fusion necessitate a shared vocabulary and tokenization, and alternatives like fine-tuning for domain-specific performance are both time consuming and computationally expensive. We therefore present an inference-time ensembling algorithm aimed at "averaging" outputs from multiple LLMs and illustrate its improved performance across multiple domains compared to its constituent models alone. Character-wise ensemble decoding, CharED, finds the marginal distribution of each character for an individual model and performs a weighted average to generate an output, character by character. In coding, math, and toxicity benchmarks, we find our proposed model able to combine complimentary strengths of multiple LLMs, regardless of vocabulary, tokenization, or model size.
- Abstract(参考訳): 大規模言語モデル(LLM)は、論理的推論から数学的能力まで、領域を計測するベンチマークにおいて、ますます印象的なパフォーマンスを達成している。
モデルを組み立てることによって、さまざまなドメインの能力がさらに向上する。
しかし、浅い融合のような推論時にモデルを組み合わせる従来の手法では、共有語彙やトークン化が必要であり、ドメイン固有のパフォーマンスのための微調整のような代替手段は、時間的・計算的に高価である。
そこで本研究では,複数の LLM から出力を「出力する」ことを目的とした推論時アンサンブルアルゴリズムを提案する。
文字ワイドアンサンブル復号法であるCharedは、個々のモデルに対して各文字の限界分布を見つけ、重み付き平均を行い、文字単位で出力を生成する。
コーディング, 数学, 毒性のベンチマークでは, 語彙, トークン化, モデルサイズに関わらず, 複数のLLMの補足的強度を組み合わせられるモデルが提案されている。
関連論文リスト
- MoD: A Distribution-Based Approach for Merging Large Language Models [0.0]
大規模言語モデル(LLM)は、多くの専門的なタスク固有の変種の開発を可能にした。
LLMをマージするための新しいアプローチであるTextitMixture of Distributions (MoD)フレームワークを提案する。
従来の重量測定法とは異なり、MoDは個々のモデルの特殊能力を効果的に保存する。
論文 参考訳(メタデータ) (2024-11-01T07:05:29Z) - Determine-Then-Ensemble: Necessity of Top-k Union for Large Language Model Ensembling [23.447466392929712]
大規模言語モデル(LLM)は、様々なタスクに様々な長所と短所を示す。
既存のLLMアンサンブル法は、しばしばモデルの互換性を見落とし、確率の非効率なアライメントに苦しむ。
textscUnion textscTop-$k$ textscEnsembling (textscUniTE)は,各モデルから上位kトークンの結合に着目し,効率的にモデルを結合する新しいアプローチである。
論文 参考訳(メタデータ) (2024-10-03T08:42:38Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions [7.103987978402038]
我々はMixture-of-Instructions (MoI)と呼ばれる新しいテクニックを紹介する。
MoIは、言語モデルのアライメント効率を高めるために、多様なシステムプロンプトと組み合わせた命令結合戦略を採用している。
提案手法はオープンソースQwen-7B-chatモデルに適用され,Qwen-SFT-MoIの開発が完了した。
論文 参考訳(メタデータ) (2024-04-29T03:58:12Z) - Learning to Decode Collaboratively with Multiple Language Models [37.31339648499042]
本稿では,複数の大規模言語モデル (LLM) に,トークンレベルで世代間をインターリーブすることで協調する手法を提案する。
復号化中のトークンレベルのコラボレーションは、各モデルの専門知識を、手元にある特定のタスクに合わせて統合することを可能にする。
論文 参考訳(メタデータ) (2024-03-06T17:23:28Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
様々なモデルの恩恵を受けながらテキストを生成するシンプルで一般的な推論アルゴリズムであるTwist decodingを導入する。
我々の方法は、語彙、トークン化、あるいは生成順序が共有されていると仮定しない。
論文 参考訳(メタデータ) (2022-05-19T01:27:53Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。