Sampling and active learning methods for network reliability estimation using K-terminal spanning tree
- URL: http://arxiv.org/abs/2407.11053v1
- Date: Tue, 9 Jul 2024 08:51:53 GMT
- Title: Sampling and active learning methods for network reliability estimation using K-terminal spanning tree
- Authors: Chen Ding, Pengfei Wei, Yan Shi, Jinxing Liu, Matteo Broggi, Michael Beer,
- Abstract summary: Network reliability analysis remains a challenge due to the increasing size and complexity of networks.
This paper presents a novel sampling method and an active learning method for efficient and accurate network reliability estimation.
- Score: 16.985964958558586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Network reliability analysis remains a challenge due to the increasing size and complexity of networks. This paper presents a novel sampling method and an active learning method for efficient and accurate network reliability estimation under node failure and edge failure scenarios. The proposed sampling method adopts Monte Carlo technique to sample component lifetimes and the K-terminal spanning tree algorithm to accelerate structure function computation. Unlike existing methods that compute only one structure function value per sample, our method generates multiple component state vectors and corresponding structure function values from each sample. Network reliability is estimated based on survival signatures derived from these values. A transformation technique extends this method to handle both node failure and edge failure. To enhance efficiency of proposed sampling method and achieve adaptability to network topology changes, we introduce an active learning method utilizing a random forest (RF) classifier. This classifier directly predicts structure function values, integrates network behaviors across diverse topologies, and undergoes iterative refinement to enhance predictive accuracy. Importantly, the trained RF classifier can directly predict reliability for variant networks, a capability beyond the sampling method alone. Through investigating several network examples and two practical applications, the effectiveness of both proposed methods is demonstrated.
Related papers
- Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Calibrate and Debias Layer-wise Sampling for Graph Convolutional
Networks [39.56471534442315]
This paper revisits the approach from a matrix approximation perspective.
We propose a new principle for constructing sampling probabilities and an efficient debiasing algorithm.
Improvements are demonstrated by extensive analyses of estimation variance and experiments on common benchmarks.
arXiv Detail & Related papers (2022-06-01T15:52:06Z) - Effective Out-of-Distribution Detection in Classifier Based on
PEDCC-Loss [5.614122064282257]
We propose an effective algorithm for detecting out-of-distribution examples utilizing PEDCC-Loss.
We mathematically analyze the nature of the confidence score output by the PEDCC (Predefined Evenly-Distribution Class Centroids) classifier.
We then construct a more effective scoring function to distinguish in-distribution (ID) and out-of-distribution.
arXiv Detail & Related papers (2022-04-10T11:47:29Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
We propose ways to obtain robust models against adversarial attacks from randomly-d binary networks.
We learn the structure of the robust model by pruning a randomly-d binary network.
Our method confirms the strong lottery ticket hypothesis in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T00:05:08Z) - i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery [11.119895959906085]
We propose a novel, structured pruning algorithm for neural networks -- the iterative, Sparse Structured Pruning, dubbed as i-SpaSP.
i-SpaSP operates by identifying a larger set of important parameter groups within a network that contribute most to the residual between pruned and dense network output.
It is shown to discover high-performing sub-networks and improve upon the pruning efficiency of provable baseline methodologies by several orders of magnitude.
arXiv Detail & Related papers (2021-12-07T05:26:45Z) - Practical Convex Formulation of Robust One-hidden-layer Neural Network
Training [12.71266194474117]
We show that the training of a one-hidden-layer, scalar-output fully-connected ReLULU neural network can be reformulated as a finite-dimensional convex program.
We derive a convex optimization approach to efficiently solve the "adversarial training" problem.
Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods.
arXiv Detail & Related papers (2021-05-25T22:06:27Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Fast Network Community Detection with Profile-Pseudo Likelihood Methods [19.639557431997037]
Most algorithms for fitting the block model likelihood function cannot scale to large-scale networks.
We propose a novel likelihood approach that decouples row and column labels in the likelihood function.
We show that our method provides strongly consistent estimates of the communities in a block model.
arXiv Detail & Related papers (2020-11-01T23:40:26Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.