Static and multivariate-temporal attentive fusion transformer for readmission risk prediction
- URL: http://arxiv.org/abs/2407.11096v1
- Date: Mon, 15 Jul 2024 03:42:44 GMT
- Title: Static and multivariate-temporal attentive fusion transformer for readmission risk prediction
- Authors: Zhe Sun, Runzhi Li, Jing Wang, Gang Chen, Siyu Yan, Lihong Ma,
- Abstract summary: We propose a novel static and attentive temporal fusion transformer (SMTAFormer) to predict short-term readmission of ICU patients.
The accuracy of our proposed method is up to 86.6%, and the area under the receiver operating characteristic curve (AUC) is up to 0.717.
- Score: 9.059101159859818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Accurate short-term readmission prediction of ICU patients is significant in improving the efficiency of resource assignment by assisting physicians in making discharge decisions. Clinically, both individual static static and multivariate temporal data collected from ICU monitors play critical roles in short-term readmission prediction. Informative static and multivariate temporal feature representation capturing and fusion present challenges for accurate readmission prediction. Methods:We propose a novel static and multivariate-temporal attentive fusion transformer (SMTAFormer) to predict short-term readmission of ICU patients by fully leveraging the potential of demographic and dynamic temporal data. In SMTAFormer, we first apply an MLP network and a temporal transformer network to learn useful static and temporal feature representations, respectively. Then, the well-designed static and multivariate temporal feature fusion module is applied to fuse static and temporal feature representations by modeling intra-correlation among multivariate temporal features and constructing inter-correlation between static and multivariate temporal features. Results: We construct a readmission risk assessment (RRA) dataset based on the MIMIC-III dataset. The extensive experiments show that SMTAFormer outperforms advanced methods, in which the accuracy of our proposed method is up to 86.6%, and the area under the receiver operating characteristic curve (AUC) is up to 0.717. Conclusion: Our proposed SMTAFormer can efficiently capture and fuse static and multivariate temporal feature representations. The results show that SMTAFormer significantly improves the short-term readmission prediction performance of ICU patients through comparisons to strong baselines.
Related papers
- TFT-multi: simultaneous forecasting of vital sign trajectories in the ICU [0.0]
Trajectory forecasting in healthcare data has been an important area of research in precision care and clinical integration for computational methods.
We extend the framework temporal fusion transformer (TFT), a multi-horizon time series prediction tool, and propose TFT-multi.
We apply TFT-multi to forecast 5 vital signs recorded in the intensive care unit: blood pressure, pulse, SpO2, temperature and respiratory rate.
arXiv Detail & Related papers (2024-09-23T22:36:37Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Multimodal Interpretable Data-Driven Models for Early Prediction of
Antimicrobial Multidrug Resistance Using Multivariate Time-Series [6.804748007823268]
We present an approach built on a collection of interpretable multimodal data-driven models that may anticipate and understand the emergence of antimicrobial multidrug resistance (AMR) germs in the intensive care unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain)
The profile and initial health status of the patient are modeled using static variables, while the evolution of the patient's health status during the ICU stay is modeled using several MTS, including mechanical ventilation and antibiotics intake.
arXiv Detail & Related papers (2024-02-09T10:16:58Z) - MPRE: Multi-perspective Patient Representation Extractor for Disease
Prediction [3.914545513460964]
We propose the Multi-perspective Patient Representation Extractor (MPRE) for disease prediction.
Specifically, we propose Frequency Transformation Module (FTM) to extract the trend and variation information of dynamic features.
In the 2D Multi-Extraction Network (2D MEN), we form the 2D temporal tensor based on trend and variation.
We also propose the First-Order Difference Attention Mechanism (FODAM) to calculate the contributions of differences in adjacent variations to the disease diagnosis.
arXiv Detail & Related papers (2024-01-01T13:52:05Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - MuST: Multimodal Spatiotemporal Graph-Transformer for Hospital
Readmission Prediction [23.303439847592735]
This study introduces a novel model called the Multitemporal Spatio Graph-Transformer (MuST) for predicting hospital readmissions.
By employing Graph Con Networks and temporal transformers, we can effectively capture spatial and temporal dependencies in EHR and chest radiographs.
We then propose a fusion transformer to combine the features from the two modalities mentioned above with the features from clinical notes extracted by a pre-trained, domain-specific transformer.
arXiv Detail & Related papers (2023-11-11T11:14:07Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Real-time Prediction for Mechanical Ventilation in COVID-19 Patients
using A Multi-task Gaussian Process Multi-objective Self-attention Network [9.287068570192057]
We propose a robust in-time predictor for in-hospital COVID-19 patient's probability of requiring mechanical ventilation.
A challenge in the risk prediction for COVID-19 patients lies in the great variability and irregular sampling of patient's vitals and labs observed in the clinical setting.
We frame the prediction task into a multi-objective learning framework, and the risk scores at all time points are optimized altogether.
arXiv Detail & Related papers (2021-02-01T20:35:22Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.