TFT-multi: simultaneous forecasting of vital sign trajectories in the ICU
- URL: http://arxiv.org/abs/2409.15586v2
- Date: Wed, 25 Sep 2024 16:13:29 GMT
- Title: TFT-multi: simultaneous forecasting of vital sign trajectories in the ICU
- Authors: Rosemary Y. He, Jeffrey N. Chiang,
- Abstract summary: Trajectory forecasting in healthcare data has been an important area of research in precision care and clinical integration for computational methods.
We extend the framework temporal fusion transformer (TFT), a multi-horizon time series prediction tool, and propose TFT-multi.
We apply TFT-multi to forecast 5 vital signs recorded in the intensive care unit: blood pressure, pulse, SpO2, temperature and respiratory rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory forecasting in healthcare data has been an important area of research in precision care and clinical integration for computational methods. In recent years, generative AI models have demonstrated promising results in capturing short and long range dependencies in time series data. While these models have also been applied in healthcare, most of them only predict one value at a time, which is unrealistic in a clinical setting where multiple measures are taken at once. In this work, we extend the framework temporal fusion transformer (TFT), a multi-horizon time series prediction tool, and propose TFT-multi, an end-to-end framework that can predict multiple vital trajectories simultaneously. We apply TFT-multi to forecast 5 vital signs recorded in the intensive care unit: blood pressure, pulse, SpO2, temperature and respiratory rate. We hypothesize that by jointly predicting these measures, which are often correlated with one another, we can make more accurate predictions, especially in variables with large missingness. We validate our model on the public MIMIC dataset and an independent institutional dataset, and demonstrate that this approach outperforms state-of-the-art univariate prediction tools including the original TFT and Prophet, as well as vector regression modeling for multivariate prediction. Furthermore, we perform a study case analysis by applying our pipeline to forecast blood pressure changes in response to actual and hypothetical pressor administration.
Related papers
- Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting [11.96384267146423]
We propose to directly predict the causes via time series forecasting (TSF) of clinical variables.
Because model training does not rely on a particular label anymore, the forecasted data can be used to predict any consensus-based label.
arXiv Detail & Related papers (2024-08-07T14:52:06Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
We propose an end-to-end robust transformer-based model called SETOR to handle irregular intervals between a patient's visits with admitted timestamps and length of stay in each visit.
Experiments conducted on two real-world healthcare datasets show that, our sequential diagnoses prediction model SETOR achieves better predictive results than previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-09-07T13:09:55Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARF approximates high dimensional data by a product variables between time dependent weights and spatially dependent factors.
DSARF is different from the state-of-the-art techniques in that it parameterizes the weights in terms of a deep switching vector auto-regressive factorization.
Our experiments attest the superior performance of DSARF in terms of long- and short-term prediction error, when compared with the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-10T20:15:59Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
Time series forecasting is fundamental to scientific and engineering problems.
Deep learning methods are well suited for this problem.
We show that it improves over the state-of-the-art for standard metrics on many real-world data sets.
arXiv Detail & Related papers (2020-02-14T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.