論文の概要: Exploring the Potentials and Challenges of Deep Generative Models in Product Design Conception
- arxiv url: http://arxiv.org/abs/2407.11104v1
- Date: Mon, 15 Jul 2024 14:28:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:50:52.975539
- Title: Exploring the Potentials and Challenges of Deep Generative Models in Product Design Conception
- Title(参考訳): 製品デザイン概念における深部生成モデルの可能性と課題
- Authors: Phillip Mueller, Lars Mikelsons,
- Abstract要約: DGM-families (VAE, GAN, Diffusion, Transformer, Radiance Field) を解析し,その強度,弱点,製品設計概念の適用性について検討した。
我々の目標は、エンジニアが意思決定プロセスを簡単にし、特定の課題に対してどの方法が最も効果的かを決定するのに役立つ洞察を提供することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The synthesis of product design concepts stands at the crux of early-phase development processes for technical products, traditionally posing an intricate interdisciplinary challenge. The application of deep learning methods, particularly Deep Generative Models (DGMs), holds the promise of automating and streamlining manual iterations and therefore introducing heightened levels of innovation and efficiency. However, DGMs have yet to be widely adopted into the synthesis of product design concepts. This paper aims to explore the reasons behind this limited application and derive the requirements for successful integration of these technologies. We systematically analyze DGM-families (VAE, GAN, Diffusion, Transformer, Radiance Field), assessing their strengths, weaknesses, and general applicability for product design conception. Our objective is to provide insights that simplify the decision-making process for engineers, helping them determine which method might be most effective for their specific challenges. Recognizing the rapid evolution of this field, we hope that our analysis contributes to a fundamental understanding and guides practitioners towards the most promising approaches. This work seeks not only to illuminate current challenges but also to propose potential solutions, thereby offering a clear roadmap for leveraging DGMs in the realm of product design conception.
- Abstract(参考訳): 製品設計の概念の合成は、伝統的に複雑な学際的課題を呈する技術製品の初期段階の開発プロセスの要点である。
ディープラーニング手法、特にDeep Generative Models(DGM)の適用は、手動イテレーションの自動化と合理化を約束し、イノベーションと効率の向上をもたらす。
しかし、DGMは製品設計概念の合成に広く採用されていない。
本稿では,この制限されたアプリケーションの背後にある理由を考察し,これらの技術の統合を成功させるために必要な要件を導出することを目的とする。
DGM-families (VAE, GAN, Diffusion, Transformer, Radiance Field) を系統的に解析し, その強度, 弱点, 製品設計概念の適用性について検討した。
我々の目標は、エンジニアが意思決定プロセスを簡単にし、特定の課題に対してどの方法が最も効果的かを決定するのに役立つ洞察を提供することです。
この領域の急速な進化を認識し、我々の分析が根本的な理解に寄与し、実践者が最も有望なアプローチに導くことを願っている。
この作業は、現在の課題を照明するだけでなく、潜在的な解決策を提案することを目的としており、製品デザイン概念の領域でDGMを活用するための明確なロードマップを提供する。
関連論文リスト
- Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems [92.89673285398521]
o1のような推論システムは、複雑な推論タスクを解く際、顕著な能力を示した。
推論モデルをトレーニングするために、模倣、探索、自己改善のフレームワークを導入します。
提案手法は,産業レベルの推論システムと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-12T16:20:36Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Deep Generative Design for Mass Production [17.60251862841578]
本稿では, ダイカストおよび射出成形に関連する制約をジェネレーティブ・デザインに組み込むことにより, 製造可能性の懸念に対処する革新的な枠組みを導入する。
この方法は複雑な3次元幾何学を製造可能なプロファイルに単純化し、製造不可能なオーバーハングのような実現不可能な特徴を除去する。
従来の3次元形状生成法よりも効率的な2次元生成モデルを採用することで、このアプローチをさらに強化する。
論文 参考訳(メタデータ) (2024-03-16T01:32:00Z) - AutoTRIZ: Artificial Ideation with TRIZ and Large Language Models [2.7624021966289605]
発明的問題解決の理論は、体系的なイノベーションに広く適用されている。
TRIZリソースと概念の複雑さは、ユーザの知識、経験、推論能力への依存と相まって、実用性を制限する。
提案するAutoTRIZは,LPMを用いてTRIZ手法を自動化・拡張する人工的思考ツールである。
論文 参考訳(メタデータ) (2024-03-13T02:53:36Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Content-Centric Prototyping of Generative AI Applications: Emerging
Approaches and Challenges in Collaborative Software Teams [2.369736515233951]
私たちの研究は、共同ソフトウェアチームがいかにして設計ガイドラインと価値を適用して適用し、反復的にプロトタイププロンプトを作成し、望ましい結果を達成するためのプロンプトを評価するかを理解することを目的としています。
その結果,コンテンツ中心のプロトタイピングアプローチとして,生成したいコンテンツから始めて,特定の属性,制約,値を識別し,ユーザがそれらの属性に影響を与えて対話する手段を探索する,という方法が明らかになった。
論文 参考訳(メタデータ) (2024-02-27T17:56:10Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - Review of Large Vision Models and Visual Prompt Engineering [50.63394642549947]
レビューは、大きな視覚モデルと視覚プロンプトエンジニアリングのためにコンピュータビジョン領域で使用される手法を要約することを目的としている。
本稿では、視覚領域における影響力のある大規模モデルと、これらのモデルに使用される一連のプロンプトエンジニアリング手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T08:48:49Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Problem examination for AI methods in product design [4.020523898765404]
本稿ではまず,製品設計におけるAI手法の学際領域に関する重要な用語と概念を明らかにする。
重要な貢献は、4つの特徴の分解可能性、相互依存、革新、創造性を使った設計問題の新たな分類である。
これらの概念をAIソリューションに初期のマッピングすることは、設計例を使ってスケッチされ、検証される。
論文 参考訳(メタデータ) (2022-01-19T15:19:29Z) - Deep Generative Models in Engineering Design: A Review [1.933681537640272]
本稿では,工学設計におけるDeep Generative Learningモデルのレビューと分析を行う。
最近のDGMは、構造最適化、材料設計、形状合成といった設計応用において有望な結果を示している。
論文 参考訳(メタデータ) (2021-10-21T02:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。