論文の概要: DeepSolution: Boosting Complex Engineering Solution Design via Tree-based Exploration and Bi-point Thinking
- arxiv url: http://arxiv.org/abs/2502.20730v1
- Date: Fri, 28 Feb 2025 05:23:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:42:19.243827
- Title: DeepSolution: Boosting Complex Engineering Solution Design via Tree-based Exploration and Bi-point Thinking
- Title(参考訳): DeepSolution: ツリーベースの探索とバイポイント思考による複雑なエンジニアリングソリューション設計の促進
- Authors: Zhuoqun Li, Haiyang Yu, Xuanang Chen, Hongyu Lin, Yaojie Lu, Fei Huang, Xianpei Han, Yongbin Li, Le Sun,
- Abstract要約: 我々は,工学的問題に対する完全かつ実現可能なソリューションを生成するシステムの能力を評価するために,新しいベンチマークであるSolutionBenchを導入する。
本稿では,木に基づく探索と二点思考機構を利用して信頼性の高いソリューションを生成する新しいシステムであるSolutionRAGを提案する。
- 参考スコア(独自算出の注目度): 96.92117129897505
- License:
- Abstract: Designing solutions for complex engineering challenges is crucial in human production activities. However, previous research in the retrieval-augmented generation (RAG) field has not sufficiently addressed tasks related to the design of complex engineering solutions. To fill this gap, we introduce a new benchmark, SolutionBench, to evaluate a system's ability to generate complete and feasible solutions for engineering problems with multiple complex constraints. To further advance the design of complex engineering solutions, we propose a novel system, SolutionRAG, that leverages the tree-based exploration and bi-point thinking mechanism to generate reliable solutions. Extensive experimental results demonstrate that SolutionRAG achieves state-of-the-art (SOTA) performance on the SolutionBench, highlighting its potential to enhance the automation and reliability of complex engineering solution design in real-world applications.
- Abstract(参考訳): 複雑なエンジニアリング課題に対するソリューションの設計は、人間の生産活動において不可欠である。
しかし, 検索拡張生成(RAG)分野における従来の研究は, 複雑なエンジニアリングソリューションの設計に関わる課題に十分対応していなかった。
このギャップを埋めるために、複数の複雑な制約のあるエンジニアリング問題に対して、完全かつ実現可能なソリューションを生成するシステムの能力を評価するために、新しいベンチマークであるSolutionBenchを導入する。
複雑な工学的ソリューションの設計をさらに進めるために,木に基づく探索と二点思考機構を活用して信頼性の高いソリューションを生成する新しいシステムであるSolutionRAGを提案する。
大規模な実験結果から、SolutionRAGはSolutionBench上での最先端(SOTA)のパフォーマンスを実現し、現実世界のアプリケーションにおける複雑なエンジニアリングソリューション設計の自動化と信頼性を高める可能性を強調している。
関連論文リスト
- AIDE: AI-Driven Exploration in the Space of Code [6.401493599308353]
大規模言語モデル(LLM)を利用した機械学習エンジニアリングエージェントであるAI-Driven Exploration(AIDE)を紹介する。
AIDEは、コード最適化問題として機械学習エンジニアリングをフレーム化し、潜在的なソリューションの空間におけるツリーサーチとして試行錯誤を定式化する。
有望なソリューションを戦略的に再利用し、精製することにより、AIDEは計算資源を効果的に取引し、性能を向上する。
論文 参考訳(メタデータ) (2025-02-18T18:57:21Z) - Creating Automated Quantum-Assisted Solutions for Optimization Problems [0.0]
ソリューションパスを探索し、自動化し、評価できるフレームワークであるQuaST決定ツリーを提案する。
私たちのセットアップはモジュール化され、高度に構造化され、柔軟性があり、どんな準備や前処理、後処理のステップも含められます。
論文 参考訳(メタデータ) (2024-09-30T16:59:14Z) - Dynamic Decision Making in Engineering System Design: A Deep Q-Learning
Approach [1.3812010983144802]
本稿では,Deep Q-learningアルゴリズムを用いてエンジニアリングシステムの設計を最適化するフレームワークを提案する。
目的は、不確実性の複数のソースが与えられたシミュレーションモデルの出力を最大化するポリシーを見つけることである。
複数の不確実性が存在する場合の2つの工学系設計問題を解くことで,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-12-28T06:11:34Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
この作業は、Answer Set Programmingのためのモデルベースのアプローチの学習フレームワークと実装を拡張します。
Inductive Logic Programming System ILASPに新たなコンフリクト解析アルゴリズムを組み込む。
論文 参考訳(メタデータ) (2022-05-14T20:42:13Z) - Machine Learning Methods in Solving the Boolean Satisfiability Problem [72.21206588430645]
本論文は, Boolean satisfiability problem (SAT) を機械学習技術で解くことに関する最近の文献をレビューする。
ML-SATソルバを手作り特徴を持つナイーブ分類器からNeuroSATのような新たなエンド・ツー・エンドSATソルバまで,進化するML-SATソルバについて検討する。
論文 参考訳(メタデータ) (2022-03-02T05:14:12Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
モバイル構築のためのインテリジェントなロボット、環境をナビゲートし、幾何学的設計に従ってその構造を変更するプロセスが必要です。
このタスクでは、ロボットのビジョンと学習の大きな課題は、GPSなしでデザインを正確に達成する方法です。
我々は,手工芸政策の性能を,基礎的なローカライゼーションと計画,最先端の深層強化学習手法を用いて評価した。
論文 参考訳(メタデータ) (2021-03-31T00:05:54Z) - SeaPearl: A Constraint Programming Solver guided by Reinforcement
Learning [0.0]
本稿では,Juliaで実装された新しい制約プログラミング問題であるSeaPearlの概念実証について述べる。
seapearlは強化学習を使用して分岐決定を学ぶために機械学習ルーチンをサポートする。
産業用ソリューションとはまだ競合していないが、seapearlは柔軟でオープンソースなフレームワークを提供することを目指している。
論文 参考訳(メタデータ) (2021-02-18T07:34:38Z) - Learning What to Defer for Maximum Independent Sets [84.00112106334655]
本稿では,各段階における解の要素的決定を学習することにより,エージェントが適応的に段階数を縮小あるいは拡張する,新たなDRL方式を提案する。
提案手法を最大独立集合(MIS)問題に適用し、現状のDRL方式よりも大幅に改善したことを示す。
論文 参考訳(メタデータ) (2020-06-17T02:19:31Z) - MineReduce: an approach based on data mining for problem size reduction [58.720142291102135]
本稿では,マイニングパターンを用いて問題サイズの削減を行うMineReduceという手法を提案する。
異種車両ルーティング問題に対するMineReduceの適用について述べる。
論文 参考訳(メタデータ) (2020-05-15T08:49:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。