論文の概要: (De)Noise: Moderating the Inconsistency Between Human Decision-Makers
- arxiv url: http://arxiv.org/abs/2407.11225v1
- Date: Mon, 15 Jul 2024 20:24:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:21:30.794383
- Title: (De)Noise: Moderating the Inconsistency Between Human Decision-Makers
- Title(参考訳): (De)ノイズ:人間の意思決定者の不整合を緩和する
- Authors: Nina Grgić-Hlača, Junaid Ali, Krishna P. Gummadi, Jennifer Wortman Vaughan,
- Abstract要約: 本研究では, アルゴリズムによる意思決定支援が, 不動産評価の文脈における人間の意思決定の不整合度を緩和するのに有効かどうかを検討する。
i) アルゴリズムによって選択されたペアワイド比較において, 回答者に見積をレビューするよう求めることと, (ii) 従来の機械的アドバイスを回答者に提供することは, 人間の反応に影響を与える効果的な方法であることがわかった。
- 参考スコア(独自算出の注目度): 15.291993233528526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior research in psychology has found that people's decisions are often inconsistent. An individual's decisions vary across time, and decisions vary even more across people. Inconsistencies have been identified not only in subjective matters, like matters of taste, but also in settings one might expect to be more objective, such as sentencing, job performance evaluations, or real estate appraisals. In our study, we explore whether algorithmic decision aids can be used to moderate the degree of inconsistency in human decision-making in the context of real estate appraisal. In a large-scale human-subject experiment, we study how different forms of algorithmic assistance influence the way that people review and update their estimates of real estate prices. We find that both (i) asking respondents to review their estimates in a series of algorithmically chosen pairwise comparisons and (ii) providing respondents with traditional machine advice are effective strategies for influencing human responses. Compared to simply reviewing initial estimates one by one, the aforementioned strategies lead to (i) a higher propensity to update initial estimates, (ii) a higher accuracy of post-review estimates, and (iii) a higher degree of consistency between the post-review estimates of different respondents. While these effects are more pronounced with traditional machine advice, the approach of reviewing algorithmically chosen pairs can be implemented in a wider range of settings, since it does not require access to ground truth data.
- Abstract(参考訳): 心理学における以前の研究では、人々の決定はしばしば矛盾している。
個人の決定は時間によって異なり、決定はさらに人によって異なる。
味覚などの主観的な問題だけでなく、感傷、職業評価、不動産評価など、より客観的な設定が期待されている。
本研究では,アルゴリズムによる意思決定支援が,不動産評価の文脈における人的意思決定の不整合度を抑えることができるかどうかを考察する。
大規模な人・物件実験において、異なる形のアルゴリズム支援が、人々が不動産価格の見積をレビューし、更新する方法にどのように影響するかを検討する。
私たちは両方に気づきます
一 アルゴリズム的に選択したペアワイズ比較のシリーズにおいて、回答者に見積をレビューするよう求めること。
二 従来の機械的アドバイスを回答者に提供することは、人間の反応に影響を与える効果的な戦略である。
最初の見積もりを1つずつレビューするのと比べて、上記の戦略が導かれる。
(i)初期推定を更新する確率が高いこと。
(二)レビュー後の見積もりの精度、及び
三 異なる回答者のレビュー後の見積もりの間の一貫性の度合いが高いこと。
これらの効果は従来の機械のアドバイスでより顕著であるが、アルゴリズムによって選択されたペアをレビューするアプローチは、地上の真実データにアクセスする必要がないため、より広い範囲で実装することができる。
関連論文リスト
- Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks [6.520709313101523]
本研究では,人的専門家による高い意思決定過程における認知バイアスの識別について検討する。
人間の判断を超越したバイアス対応AI拡張ワークフローを提案する。
実験では,提案モデルとエージェントワークフローの両方が,人間の判断と代替モデルの両方において有意に改善されている。
論文 参考訳(メタデータ) (2024-11-13T10:42:11Z) - Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - Mitigating Cognitive Biases in Multi-Criteria Crowd Assessment [22.540544209683592]
クラウドソーシングにおけるマルチ基準アセスメントに関連する認知バイアスに着目した。
複数の異なる基準で目標を同時に評価するクラウドワーカーは、いくつかの基準の優位性や評価対象の世界的な印象による偏りのある応答を提供することができる。
評価基準間の関係を考慮に入れたベイズ意見集約モデルのための2つの具体的なモデル構造を提案する。
論文 参考訳(メタデータ) (2024-07-10T16:00:23Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - Decision Theoretic Foundations for Experiments Evaluating Human Decisions [18.27590643693167]
我々は、人間のパフォーマンスの損失をバイアスの形で評価するためには、合理的なエージェントが実用性を最大化する決定を識別する必要があるという情報を参加者に提供する必要があると論じる。
実演として,AIによる意思決定に関する文献からの意思決定の評価が,これらの基準をどの程度達成したかを評価する。
論文 参考訳(メタデータ) (2024-01-25T16:21:37Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding [2.8498944632323755]
選択的に観測されたデータにおける予測アルゴリズムの頑健な設計と評価のための統一的なフレームワークを提案する。
我々は、選択されていないユニットと選択されたユニットの間で、平均して結果がどの程度異なるかという一般的な仮定を課す。
我々は,大規模な予測性能推定値のクラスにおける境界値に対するバイアス付き機械学習推定器を開発する。
論文 参考訳(メタデータ) (2022-12-19T20:41:44Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
説明は、アルゴリズムと人間の意思決定者とのコミュニケーションを促進するのに役立つ。
因果モデルに関する特徴に基づく説明のセマンティクスは、意思決定者の以前の信念から漏れを引き起こす。
このような違いは、準最適かつ偏った決定結果をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-06-17T11:43:42Z) - The Impact of Algorithmic Risk Assessments on Human Predictions and its
Analysis via Crowdsourcing Studies [79.66833203975729]
我々は,在職者が将来の再起を予測することを任務とするヴィグネット研究を行う。
参加者は、再逮捕の確率が50%よりかなり低いと判断しても、犯罪者が再逮捕されることをしばしば予測します。
裁判官の判断は、参加者の予測とは異なり、部分的には再逮捕の可能性がある要因に依存する。
論文 参考訳(メタデータ) (2021-09-03T11:09:10Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
観測データから代替案の可能性を推定することは難しい問題である。
入力のドメイン不変表現を学習するアルゴリズムは、しばしば不適切であることを示す。
我々は,様々なベンチマークデータセットの最先端性を大幅に向上させる,ディープカーネル回帰アルゴリズムと後続正規化フレームワークを開発した。
論文 参考訳(メタデータ) (2020-01-14T12:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。