論文の概要: Unraveling the Truth: Do LLMs really Understand Charts? A Deep Dive into Consistency and Robustness
- arxiv url: http://arxiv.org/abs/2407.11229v1
- Date: Mon, 15 Jul 2024 20:29:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:21:30.790702
- Title: Unraveling the Truth: Do LLMs really Understand Charts? A Deep Dive into Consistency and Robustness
- Title(参考訳): LLMはチャートを本当に理解しているか? 一貫性とロバストさを深く掘り下げる
- Authors: Srija Mukhopadhyay, Adnan Qidwai, Aparna Garimella, Pritika Ramu, Vivek Gupta, Dan Roth,
- Abstract要約: チャート質問応答(CQA)は、ビジュアル言語理解の重要な領域である。
この分野の現在のビジュアル言語モデル(VLM)は、まだ未調査のままである。
本稿では,包括的データセット上での最先端VLMの評価を行う。
- 参考スコア(独自算出の注目度): 47.68358935792437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models' ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.
- Abstract(参考訳): チャート質問応答(CQA)は、ビジュアル言語理解の重要な領域である。
しかし、この分野における現在のVisual Language Models (VLM) の頑健さと一貫性はいまだ解明されていない。
本稿では,多種多様な問合せカテゴリやチャート形式を含む包括的データセット上での最先端VLMの評価を行う。
私たちは2つの重要な側面を調査します。
1) モデルが様々なレベルのチャートを処理し、複雑さを問う能力、及び
2)同じ基礎データの異なる視覚的表現にまたがる堅牢性。
本分析では,従来のモデルの強みと弱みを両立させ,質問型とチャート型に基づく有意な性能変化を明らかにした。
さらに,より堅牢で信頼性の高いCQAシステムを構築するために,改善すべき領域を特定し,今後の研究方向性を提案する。
この研究は、現在のモデルの限界に光を当て、今後の分野の発展への道を開く。
関連論文リスト
- CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXivは、arXiv論文の2,323のチャートを含む総合的な評価スイートである。
品質を確保するために、すべてのチャートと質問は、人間の専門家によって手書きされ、キュレーションされ、検証されます。
その結果、最強のプロプライエタリモデルの推論スキルの間に、かなり過小評価されていたギャップが明らかとなった。
論文 参考訳(メタデータ) (2024-06-26T17:50:11Z) - Enhancing Question Answering on Charts Through Effective Pre-training Tasks [26.571522748519584]
グラフやプロットに適用した場合の現在のVisualQAモデルの制限に対処する。
以上の結果から,既存のモデルでは,図の構造的・視覚的文脈に関する疑問に答える上で,特に性能が低いことが示唆された。
本稿では,構造的・視覚的知識と数値的疑問の理解の両面から,既存のモデルを強制する3つの簡単な事前学習タスクを提案する。
論文 参考訳(メタデータ) (2024-06-14T14:40:10Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
グラフ形式のデータの可視化は、データ分析において重要な役割を担い、重要な洞察を提供し、情報的な意思決定を支援する。
大規模言語モデルのような大規模な基盤モデルは、様々な自然言語処理タスクに革命をもたらした。
本研究は,自然言語処理,コンピュータビジョン,データ解析の分野における研究者や実践者の包括的資源として機能する。
論文 参考訳(メタデータ) (2024-03-18T17:57:09Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
本稿ではUNK-VQAと呼ばれる包括的データセットを提案する。
まず、画像または疑問について意図的に摂動することで、既存のデータを拡大する。
そこで我々は,新たなマルチモーダル大規模モデルのゼロショット性能と少数ショット性能を広範囲に評価した。
論文 参考訳(メタデータ) (2023-10-17T02:38:09Z) - Generative Visual Question Answering [0.0]
本稿では、時間的一般化の成果を得られる高度な視覚質問回答(VQA)モデルを作成するための実行可能なアプローチについて論じる。
我々は,VQAv2およびMS-COCOデータセットの画像とキャプションを利用して,安定拡散による新しい画像を生成する新しいデータセットGenVQAを提案する。
パフォーマンス評価では、オリジナルのVQAv2データセットを反映した質問に焦点が当てられ、回答は新しいイメージに調整されている。
論文 参考訳(メタデータ) (2023-07-18T05:30:23Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
VQA(Document Visual Question Answering)は、自然言語による質問に答えるために、視覚的に豊富なドキュメントを理解することを目的としている。
我々は3,067の文書ページと16,558の質問応答ペアからなる新しいドキュメントVQAデータセットTAT-DQAを紹介する。
我々は,テキスト,レイアウト,視覚画像など,多要素の情報を考慮に入れたMHSTという新しいモデルを開発し,異なるタイプの質問にインテリジェントに対処する。
論文 参考訳(メタデータ) (2022-07-25T01:43:19Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
視覚的な質問に答えることを学ぶことは、マルチモーダル入力が2つの特徴空間内にあるため、難しい作業である。
視覚質問応答タスク(MGA-VQA)のための多言語アライメントアーキテクチャを提案する。
我々のモデルはアライメントを異なるレベルに分割し、追加のデータやアノテーションを必要とせずにより良い相関関係を学習します。
論文 参考訳(メタデータ) (2022-01-25T22:30:54Z) - Classification-Regression for Chart Comprehension [16.311371103939205]
チャート質問応答(CQA)は、チャート理解を評価するために用いられるタスクである。
分類と回帰を共同で学習する新しいモデルを提案する。
私たちのモデルのエッジは、特に語彙外回答の質問に重点を置いています。
論文 参考訳(メタデータ) (2021-11-29T18:46:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。