論文の概要: Private Estimation when Data and Privacy Demands are Correlated
- arxiv url: http://arxiv.org/abs/2407.11274v2
- Date: Sat, 19 Apr 2025 01:52:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 13:30:51.645294
- Title: Private Estimation when Data and Privacy Demands are Correlated
- Title(参考訳): データとプライバシ要求が関連している場合のプライベート推定
- Authors: Syomantak Chaudhuri, Thomas A. Courtade,
- Abstract要約: 微分プライバシーは、統計クエリーのプライバシーを確保するための現在のゴールドスタンダードである。
単変量データに対する経験的平均推定の問題とカテゴリーデータに対する周波数推定について考察する。
提案アルゴリズムは,PAC誤差と平均二乗誤差の両方で理論的性能を保証する。
- 参考スコア(独自算出の注目度): 5.755004576310333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential Privacy (DP) is the current gold-standard for ensuring privacy for statistical queries. Estimation problems under DP constraints appearing in the literature have largely focused on providing equal privacy to all users. We consider the problems of empirical mean estimation for univariate data and frequency estimation for categorical data, both subject to heterogeneous privacy constraints. Each user, contributing a sample to the dataset, is allowed to have a different privacy demand. The dataset itself is assumed to be worst-case and we study both problems under two different formulations -- first, where privacy demands and data may be correlated, and second, where correlations are weakened by random permutation of the dataset. We establish theoretical performance guarantees for our proposed algorithms, under both PAC error and mean-squared error. These performance guarantees translate to minimax optimality in several instances, and experiments confirm superior performance of our algorithms over other baseline techniques.
- Abstract(参考訳): ディファレンシャルプライバシ(DP)は、統計クエリのプライバシを確保するための現在のゴールドスタンダードである。
文献に現れるDP制約に基づく推定問題は、主に全ユーザーに平等なプライバシーを提供することに焦点が当てられている。
本稿では,一変量データに対する経験的平均推定の問題とカテゴリデータに対する周波数推定の問題について考察する。
データセットにサンプルをコントリビュートする各ユーザは,それぞれ異なるプライバシ要求を持つことができる。
データセット自体が最悪のケースであると仮定され、まず、プライバシの要求とデータが相関する可能性のあるものと、データセットのランダムな置換によって相関が弱まるという2つの異なる定式化の下で、両方の問題を調査する。
提案アルゴリズムは,PAC誤差と平均二乗誤差の両方で理論的性能を保証する。
これらの性能保証は、いくつかの事例においてミニマックス最適性に変換され、実験により、他のベースライン技術よりもアルゴリズムの優れた性能が確認される。
関連論文リスト
- Differentially Private Random Feature Model [52.468511541184895]
プライバシを保存するカーネルマシンに対して,差分的にプライベートな特徴モデルを作成する。
本手法は,プライバシを保護し,一般化誤差を導出する。
論文 参考訳(メタデータ) (2024-12-06T05:31:08Z) - DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
有効なデータパブリッシングアルゴリズムであるemphDP-CDAを導入する。
提案アルゴリズムは、クラス固有の方法でデータをランダムに混合し、プライバシー保証を確保するために慎重に調整されたランダム性を誘導することにより、合成データセットを生成する。
以上の結果から,DP-CDAを用いた合成データセットは,同一のプライバシー要件下であっても,従来のデータパブリッシングアルゴリズムで生成したデータセットよりも優れた実用性が得られることが示唆された。
論文 参考訳(メタデータ) (2024-11-25T06:14:06Z) - Differentially Private Covariate Balancing Causal Inference [8.133739801185271]
差分プライバシーは、プライバシー保護のための主要な数学的枠組みである。
我々のアルゴリズムは、所定のプライバシー予算の下で、整合性やレート最適性などの統計的保証のある点推定と区間推定の両方を生成する。
論文 参考訳(メタデータ) (2024-10-18T18:02:13Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - Causal Inference with Differentially Private (Clustered) Outcomes [16.166525280886578]
ランダム化実験から因果効果を推定することは、参加者が反応を明らかにすることに同意すれば実現可能である。
我々は,任意のクラスタ構造を利用する新たな差分プライバシメカニズムであるCluster-DPを提案する。
クラスタの品質を直感的に測定することで,プライバシ保証を維持しながら分散損失を改善することができることを示す。
論文 参考訳(メタデータ) (2023-08-02T05:51:57Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Combining Public and Private Data [7.975795748574989]
分散を最小化するために最適化された平均の混合推定器を導入する。
ユーザのプライバシニーズに比例してデータをサブサンプリングすることで、個人のプライバシを保護する手法よりも、当社のメカニズムの方が望ましい、と我々は主張する。
論文 参考訳(メタデータ) (2021-10-29T23:25:49Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
本稿では,中央値に対する有意な個人的信頼区間を計算するためのいくつかの戦略を提案し,評価する。
また、サンプリングからのエラーと出力の保護からのエラーという2つの不確実性源に対処することが、この不確実性を逐次的に組み込んだ単純なアプローチよりも望ましいことを示す。
論文 参考訳(メタデータ) (2021-06-18T19:45:37Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
異なるプライバシーは、米国国勢調査から商用デバイスで収集されたデータまで、さまざまなアプリケーションで標準要件として浮上しています。
このようなデータベースの数は、複数のソースからのデータからなり、それらすべてが信頼できるわけではない。
これにより、既存のプライベート分析は、腐敗したデータを注入する敵による攻撃に弱い。
論文 参考訳(メタデータ) (2021-02-18T05:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。