論文の概要: Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives
- arxiv url: http://arxiv.org/abs/2407.11280v1
- Date: Mon, 15 Jul 2024 23:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 19:02:01.223298
- Title: Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives
- Title(参考訳): インテリジェントな組織間プロセスマイニング:調査と新たな展望
- Authors: Yiyuan Yang, Zheshun Wu, Yong Chu, Zhenghua Chen, Zenglin Xu, Qingsong Wen,
- Abstract要約: 本稿では,プロセスマイニングの分野に関する具体的な見解を提唱する。
まず、プロセスマイニングの枠組み、一般的な産業応用、そして人工知能と組み合わされた最新の進歩について要約する。
この視点は、複雑な多組織データ分析のための洗練されたソリューションを提供するために人工知能を活用することによって、プロセスマイニングに革命をもたらすことを目的としている。
- 参考スコア(独自算出の注目度): 40.62773366902451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Process mining, as a high-level field in data mining, plays a crucial role in enhancing operational efficiency and decision-making across organizations. In this survey paper, we delve into the growing significance and ongoing trends in the field of process mining, advocating a specific viewpoint on its contents, application, and development in modern businesses and process management, particularly in cross-organizational settings. We first summarize the framework of process mining, common industrial applications, and the latest advances combined with artificial intelligence, such as workflow optimization, compliance checking, and performance analysis. Then, we propose a holistic framework for intelligent process analysis and outline initial methodologies in cross-organizational settings, highlighting both challenges and opportunities. This particular perspective aims to revolutionize process mining by leveraging artificial intelligence to offer sophisticated solutions for complex, multi-organizational data analysis. By integrating advanced machine learning techniques, we can enhance predictive capabilities, streamline processes, and facilitate real-time decision-making. Furthermore, we pinpoint avenues for future investigations within the research community, encouraging the exploration of innovative algorithms, data integration strategies, and privacy-preserving methods to fully harness the potential of process mining in diverse, interconnected business environments.
- Abstract(参考訳): データマイニングのハイレベル分野であるプロセスマイニングは、組織間の運用効率と意思決定を向上する上で重要な役割を担っている。
本稿では, プロセスマイニングの分野における重要性と現在進行中の傾向を探求し, その内容, 適用, 開発に関する具体的な視点と, プロセスマネジメント, 特に組織横断的な状況について考察する。
まず、プロセスマイニングのフレームワーク、一般的な産業アプリケーション、ワークフロー最適化、コンプライアンスチェック、パフォーマンス分析などの人工知能と組み合わせた最新の進歩について要約する。
そこで我々は,知的プロセス分析のための総合的なフレームワークを提案し,組織横断的な設定で初期方法論を概説し,課題と機会を浮き彫りにしている。
この視点は、複雑な多組織データ分析のための洗練されたソリューションを提供するために人工知能を活用することによって、プロセスマイニングに革命をもたらすことを目的としている。
高度な機械学習技術を統合することで、予測能力を向上し、プロセスを合理化し、リアルタイムな意思決定を容易にすることができる。
さらに,研究コミュニティ内での今後の調査の道のりを指摘し,多様な相互接続型ビジネス環境におけるプロセスマイニングの可能性を完全に活用するための革新的なアルゴリズム,データ統合戦略,プライバシ保護手法の探求を奨励する。
関連論文リスト
- WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
複雑な産業プロセスの異常は、しばしばイベントデータの高変動性と複雑さによって隠蔽される。
本稿では、ドメイン知識、プロセスマイニング、機械学習の統合により、ビジネスプロセスメトリクスを分析する新しい手法WISEを紹介する。
WISEはビジネスプロセス分析における自動化を強化し、望ましいプロセスフローからの逸脱を効果的に検出する。
論文 参考訳(メタデータ) (2024-10-06T07:57:08Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
我々は、ビジネスプロセス管理におけるAI/MLの統合を検討するため、学術文献の体系的なレビューを行う。
ビジネスプロセス管理とプロセスマップでは、AI/MLはプロセスメトリクスの運用データを使用して大幅に改善されている。
論文 参考訳(メタデータ) (2024-07-07T18:26:00Z) - Revolutionizing Process Mining: A Novel Architecture for ChatGPT Integration and Enhanced User Experience through Optimized Prompt Engineering [2.4578723416255754]
本研究では,ChatGPTなどの大規模言語モデル(LLM)をプロセスマイニングツールに統合することで,新たなアプローチを提案する。
この研究の重要な革新は、各プロセスマイニングサブモジュール用に調整された迅速なエンジニアリング戦略を開発することである。
このアプローチの有効性を検証するために、研究者らは、BehfaLabのプロセスマイニングツールを使用している17社のデータを使用した。
論文 参考訳(メタデータ) (2024-05-17T10:48:14Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - Towards Automated Process Planning and Mining [77.34726150561087]
我々は、AIとBPM分野の研究者が共同で働く研究プロジェクトについて紹介する。
プロセスモデルを自動的に導出するための総合的な研究課題、研究の関連分野、および総合的な研究枠組みについて論じる。
論文 参考訳(メタデータ) (2022-08-18T16:41:22Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - A Framework for Online Investment Algorithms [0.0]
我々は,アルゴリズムポートフォリオ管理のための統合的かつオンラインなフレームワークについて,その結果を提示し報告する。
この記事では、プロセスレベルの学習フレームワークにインターンで組み込むことができるワークフローを提供します。
以上の結果から,我々のフレームワークと再サンプリング手法を併用して,市場資本化ベンチマークを上回り得ることが確認された。
論文 参考訳(メタデータ) (2020-03-30T11:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。