論文の概要: FR-SLAM: A SLAM Improvement Method Based on Floor Plan Registration
- arxiv url: http://arxiv.org/abs/2407.11299v1
- Date: Tue, 16 Jul 2024 01:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:52:01.264771
- Title: FR-SLAM: A SLAM Improvement Method Based on Floor Plan Registration
- Title(参考訳): FR-SLAM:床計画登録に基づくSLAM改善手法
- Authors: Jiantao Feng, Xinde Li, HyunCheol Park, Juan Liu, Zhentong Zhang,
- Abstract要約: 本稿では,形態素に基づくフロアプラン登録アルゴリズムを用いて,フロアプラン登録に基づくSLAM法を提案する。
これにより、包括的なモーションマップの迅速な取得と効率的な経路計画が容易になり、迅速なナビゲーションが短い時間枠内で位置を目標にすることができる。
実データとシミュレーションデータを用いて行った実験は,他のベンチマークアルゴリズムと比較すると,フロアプランの登録精度の向上と時間消費の短縮を実現している。
- 参考スコア(独自算出の注目度): 4.9805321746841225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) technology enables the construction of environmental maps and localization, serving as a key technique for indoor autonomous navigation of mobile robots. Traditional SLAM methods typically require exhaustive traversal of all rooms during indoor navigation to obtain a complete map, resulting in lengthy path planning times and prolonged time to reach target points. Moreover, cumulative errors during motion lead to inaccurate robot localization, impacting navigation efficiency.This paper proposes an improved SLAM method, FR-SLAM, based on floor plan registration, utilizing a morphology-based floor plan registration algorithm to align and transform original floor plans. This approach facilitates the rapid acquisition of comprehensive motion maps and efficient path planning, enabling swift navigation to target positions within a shorter timeframe. To enhance registration and robot motion localization accuracy, a real-time update strategy is employed, comparing the current position's building structure with the map and dynamically updating floor plan registration results for precise localization. Comparative tests conducted on real and simulated datasets demonstrate that, compared to other benchmark algorithms, this method achieves higher floor plan registration accuracy and shorter time consumption to reach target positions.
- Abstract(参考訳): SLAM技術は,移動ロボットの屋内自律走行における重要な技術として,環境マップの構築と位置決めを可能にする。
従来のSLAM法は、完全な地図を得るためには、屋内ナビゲーション中にすべての部屋を徹底的に横断する必要があるため、長い経路計画時間と目標地点に到達するのに長い時間がかかる。
さらに,動作中の累積誤差がロボットの局所化に寄与し,ナビゲーション効率に影響を及ぼすとともに,フロアプラン登録に基づく改良されたSLAM法であるFR-SLAMを提案し,フロアプランの整列と変換にモルフォロジーに基づくフロアプラン登録アルゴリズムを用いた。
このアプローチにより、包括的なモーションマップの迅速な取得と効率的な経路計画が実現され、より短い時間枠内での迅速なナビゲーションが可能となる。
登録とロボット動作のローカライゼーションの精度を高めるために、現在位置の建物構造を地図と比較し、正確なローカライゼーションのためのフロアプラン登録結果を動的に更新するリアルタイム更新戦略を採用する。
実データとシミュレーションデータの比較実験により, 他のベンチマークアルゴリズムと比較して, フロアプランの登録精度が向上し, 目標位置に到達するまでの所要時間が短縮された。
関連論文リスト
- Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation [64.84996994779443]
本稿では,連続視覚言語ナビゲーション(VLN)タスクのためのAffordances-Oriented Plannerを提案する。
我々のAO-Plannerは、様々な基礎モデルを統合して、アベイランス指向の低レベルな動き計画とハイレベルな意思決定を実現する。
挑戦的なR2R-CEデータセットとRxR-CEデータセットの実験は、AO-Plannerが最先端のゼロショットのパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2024-07-08T12:52:46Z) - FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field [12.247977717070773]
本稿では,エゴセントリックなマルチロボット探査における3次元点雲マップの融合について述べる。
提案手法は、最先端の場所認識と学習記述子を利用して、地図間の重複を効率的に検出する。
提案手法の有効性は,ロボット探査の複数のフィールドミッションを通じて実証された。
論文 参考訳(メタデータ) (2024-04-27T20:54:15Z) - FIT-SLAM -- Fisher Information and Traversability estimation-based
Active SLAM for exploration in 3D environments [1.4474137122906163]
アクティブビジュアルSLAMは、地上ロボットのためのデニッドサブテレイン環境と屋外環境における幅広い応用を見出す。
探索ミッション中に目標選択と目標に向けた経路計画に知覚的考察を取り入れることが不可欠である。
本研究では,無人地上車両(UGV)を対象とした新しい探査手法であるFIT-SLAMを提案する。
論文 参考訳(メタデータ) (2024-01-17T16:46:38Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
本稿では,交通地図に依存しない効率的な軌道予測モデルを提案する。
注意機構、LSTM、グラフ畳み込みネットワーク、時間変換器を包括的に活用することにより、我々のモデルは全てのエージェントのリッチな動的および相互作用情報を学習することができる。
提案モデルでは,既存のマップフリー手法と比較して高い性能を達成し,Argoverseデータセット上のほとんどのマップベース最先端手法を超越する。
論文 参考訳(メタデータ) (2023-07-19T08:36:31Z) - Leveraging Scene Embeddings for Gradient-Based Motion Planning in Latent
Space [24.95320093765214]
AMP-LSは、従来の計画ベースラインを桁違いの速度で上回りながら、新しい複雑なシーンで計画できる。
実世界の動的シーンにおける閉ループ計画を実現するのに十分な速度が得られた。
論文 参考訳(メタデータ) (2023-03-06T18:49:39Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
本研究では、長距離空間依存を計画して行動を生成する障害マップを与えられた空間計画変換器(SPT)を提案する。
エージェントが地上の真理マップを知らない環境では、エンド・ツー・エンドのフレームワークで事前訓練されたSPTを利用する。
SPTは、操作タスクとナビゲーションタスクの両方のすべてのセットアップにおいて、最先端の差別化可能なプランナーよりも優れています。
論文 参考訳(メタデータ) (2021-12-02T06:48:16Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
本研究では,大規模自律飛行とリアルタイムセマンティックマッピングを,挑戦的なアンダーキャノピー環境下で実現可能な統合システムを提案する。
我々は、スキャン全体で関連付けられ、木のトランクモデルと同様にロボットのポーズを制約するために使用されるLiDARデータから、木の幹と地面の平面を検出し、モデル化する。
ドリフト補償機構は、プランナー最適性とコントローラ安定性を維持しつつ、セマンティックSLAM出力を用いたドリフトをリアルタイムで最小化するように設計されている。
論文 参考訳(メタデータ) (2021-09-14T07:24:53Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
アイドルヘイリングプラットフォーム上での現実世界の車両の深層強化学習と意思決定時間計画に基づく新しい実用的枠組みを提示する。
本手法は,重み付きバッチ学習アルゴリズムを用いて乗車時の状態値関数を学習する。
配車シミュレーション環境におけるベースラインでアルゴリズムをベンチマークし、収益効率の向上における優位性を実証します。
論文 参考訳(メタデータ) (2021-03-08T05:34:05Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
複数の目的地間でリアルタイムに個別の避難経路を生成する屋内避難のための渋滞対応ルーティングソリューションを提案する。
建物内の混雑分布をモデル化するために、ユーザエンド拡張現実(AR)デバイスから避難者の位置を集約して、オンザフライで取得した人口密度マップを用いる。
論文 参考訳(メタデータ) (2020-04-25T22:54:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。