論文の概要: MAGIC++: Efficient and Resilient Modality-Agnostic Semantic Segmentation via Hierarchical Modality Selection
- arxiv url: http://arxiv.org/abs/2412.16876v1
- Date: Sun, 22 Dec 2024 06:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:27.855518
- Title: MAGIC++: Efficient and Resilient Modality-Agnostic Semantic Segmentation via Hierarchical Modality Selection
- Title(参考訳): MAGIC++: 階層的モダリティ選択による効率的かつ弾力的なセマンティックセマンティックセマンティックセグメンテーション
- Authors: Xu Zheng, Yuanhuiyi Lyu, Lutao Jiang, Jiazhou Zhou, Lin Wang, Xuming Hu,
- Abstract要約: 本稿では,効率的なマルチモーダル融合と階層的モダリティ選択のための2つの重要なプラグアンドプレイモジュールからなるMAGIC++フレームワークを紹介する。
本手法は実世界のベンチマークと合成ベンチマークの両方で最先端の性能を実現する。
本手法は, 先行技術よりも大きなマージンで優れる新奇なモダリティ非依存環境において, 優れた手法である。
- 参考スコア(独自算出の注目度): 20.584588303521496
- License:
- Abstract: In this paper, we address the challenging modality-agnostic semantic segmentation (MaSS), aiming at centering the value of every modality at every feature granularity. Training with all available visual modalities and effectively fusing an arbitrary combination of them is essential for robust multi-modal fusion in semantic segmentation, especially in real-world scenarios, yet remains less explored to date. Existing approaches often place RGB at the center, treating other modalities as secondary, resulting in an asymmetric architecture. However, RGB alone can be limiting in scenarios like nighttime, where modalities such as event data excel. Therefore, a resilient fusion model must dynamically adapt to each modality's strengths while compensating for weaker inputs.To this end, we introduce the MAGIC++ framework, which comprises two key plug-and-play modules for effective multi-modal fusion and hierarchical modality selection that can be equipped with various backbone models. Firstly, we introduce a multi-modal interaction module to efficiently process features from the input multi-modal batches and extract complementary scene information with channel-wise and spatial-wise guidance. On top, a unified multi-scale arbitrary-modal selection module is proposed to utilize the aggregated features as the benchmark to rank the multi-modal features based on the similarity scores at hierarchical feature spaces. This way, our method can eliminate the dependence on RGB modality at every feature granularity and better overcome sensor failures and environmental noises while ensuring the segmentation performance. Under the common multi-modal setting, our method achieves state-of-the-art performance on both real-world and synthetic benchmarks. Moreover, our method is superior in the novel modality-agnostic setting, where it outperforms prior arts by a large margin.
- Abstract(参考訳): 本稿では,すべての特徴の粒度において,すべてのモダリティの価値を集中させることを目的とした,挑戦的なモダリティに依存しないセマンティックセマンティックセマンティックセマンティックセマンティクス(MaSS)について述べる。
すべての利用可能な視覚的モダリティのトレーニングと、それらの任意の組み合わせを効果的に融合させることは、セマンティックセグメンテーションにおける堅牢なマルチモーダル融合、特に実世界のシナリオにおいて不可欠である。
既存のアプローチはしばしばRGBを中心に置き、他のモダリティを二次的なものとして扱い、結果として非対称なアーキテクチャとなる。
しかし、RGBだけは、イベントデータなどのモダリティが優れているナイトタイムのようなシナリオで制限される可能性がある。
そのため、回復力のある融合モデルでは、より弱い入力を補償しながら各モードの強みに動的に適応する必要がある。このために、効率的なマルチモーダル融合のための2つの重要なプラグアンドプレイモジュールと、様々なバックボーンモデルを備えた階層的モダリティ選択を含むMAGIC++フレームワークを導入する。
まず、入力されたマルチモーダルバッチから特徴を効率的に処理し、チャンネルワイドかつ空間的なガイダンスで補完的なシーン情報を抽出するマルチモーダルインタラクションモジュールを提案する。
さらに,階層的特徴空間における類似度スコアに基づくマルチモーダル特徴量ランキングのベンチマークとして,集約された特徴量を利用するために,統一されたマルチスケール任意モーダル選択モジュールを提案する。
これにより,RGBの粒度依存性を解消し,センサの故障や環境騒音を克服し,セグメンテーション性能を確保できる。
一般的なマルチモーダル設定では,本手法は実世界のベンチマークと合成ベンチマークの両方で最先端の性能を実現する。
さらに,本手法は,先行技術よりも大きなマージンで優れる,新しいモダリティ非依存環境において優れている。
関連論文リスト
- Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition [12.382193259575805]
本稿では,効率的な骨格に基づく行動認識のための多モード協調学習(MMCL)フレームワークを提案する。
MMCLフレームワークは,トレーニング期間中に多要素協調学習を行い,推論に簡潔な骨格のみを用いることで効率を向上する。
論文 参考訳(メタデータ) (2024-07-22T15:16:47Z) - Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities [8.517830626176641]
Any2Segは、任意の視覚的条件におけるモダリティの組み合わせから堅牢なセグメンテーションを実現する新しいフレームワークである。
4つのモダリティを持つ2つのベンチマークの実験は、Any2Segがマルチモーダル設定の下で最先端を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T03:34:38Z) - Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation [7.797154022794006]
最近の試みでは、RGBのモダリティを中心とみなし、その他を補助的とみなし、2つの枝を持つ非対称なアーキテクチャを生み出している。
本稿では,コンパクトモデルから高性能モデルまで,様々なバックボーンと柔軟にペアリングできるMAGICという新しい手法を提案する。
提案手法は, モデルパラメータを60%削減しつつ, 最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-16T03:19:59Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semanticsを紹介する。
我々は,グローバルな特徴とローカルな特徴の効果的な抽出と統合を保証するために,複数のスケールで機能融合を採用している。
実験により,本手法は複数のデータセットにまたがって優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-24T08:58:48Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
本論文は、任意のモーダリティ・サリエント物体検出(AM SOD)の課題について述べる。
任意のモダリティ、例えばRGBイメージ、RGB-Dイメージ、RGB-D-Tイメージから有能なオブジェクトを検出することを目的としている。
AM SODの2つの基本的な課題を解明するために,新しいモード適応トランス (MAT) を提案する。
論文 参考訳(メタデータ) (2024-05-06T11:02:02Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
マルチモーダル特徴の融合と復号を導くために,クロスモーダル・セマンティックスをマイニングする手法を提案する。
具体的には,(1)全周減衰核融合(AF),(2)粗大デコーダ(CFD),(3)多層自己超越からなる新しいネットワークXMSNetを提案する。
論文 参考訳(メタデータ) (2023-05-17T14:30:11Z) - Missing Modality Robustness in Semi-Supervised Multi-Modal Semantic
Segmentation [27.23513712371972]
簡単なマルチモーダル核融合機構を提案する。
また,マルチモーダル学習のためのマルチモーダル教師であるM3Lを提案する。
我々の提案は、最も競争力のあるベースラインよりも、ロバストmIoUで最大10%の絶対的な改善を示す。
論文 参考訳(メタデータ) (2023-04-21T05:52:50Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Abstractive Sentence Summarization with Guidance of Selective Multimodal
Reference [3.505062507621494]
モーダル間の相互関係を考慮したマルチモーダル階層選択変換器(mhsf)モデルを提案する。
提案したmhsfモデルの汎用性を,事前学習+微調整および新鮮トレーニング戦略を用いて評価した。
論文 参考訳(メタデータ) (2021-08-11T09:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。