論文の概要: Learning-augmented Maximum Independent Set
- arxiv url: http://arxiv.org/abs/2407.11364v1
- Date: Tue, 16 Jul 2024 04:05:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:32:32.348420
- Title: Learning-augmented Maximum Independent Set
- Title(参考訳): 学習強化最大独立集合
- Authors: Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, Chen Wang,
- Abstract要約: 学習強化アルゴリズムの枠組みにおける一般グラフ上での最大独立集合(MIS)問題について検討する。
機械学習モデルから得られた予測によって得られたオラクルの存在下で、この障壁を破ることができることを示す。
- 参考スコア(独自算出の注目度): 20.58740333788296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of $n^{1-\delta}$ for any $\delta>0$. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability $1/2+\varepsilon$. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability $1/2 + \varepsilon$. Under this setting, we show an algorithm that obtains an $\tilde{O}(\sqrt{\Delta}/\varepsilon)$-approximation in $O(m)$ time where $\Delta$ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability $1/2 + \varepsilon$. For this setting, we show an $O(1)$-approximation algorithm using $O(n/\varepsilon^2)$ total queries and $\tilde{O}(m)$ runtime.
- Abstract(参考訳): 学習強化アルゴリズムの枠組みにおける一般グラフ上での最大独立集合(MIS)問題について検討する。
MIS問題はNPハードであることが知られており、任意の$\delta>0$に対して$n^{1-\delta}$に近似するNPハードでもある。
固定MISの頂点メンバシップクエリに1/2+\varepsilon$の確率で答える機械学習モデルから得られる予測によって得られたオラクルの存在下で、この障壁を破ることができることを示す。
最初の設定では、頂点が固定MISに属しているかどうかを知るために頂点毎に1回、オラクルは1/2 + \varepsilon$の確率で正しい答えを返すことができる。
この設定では、$\tilde{O}(\sqrt{\Delta}/\varepsilon)$-approximation in $O(m)$ time where $\Delta$ is the maximum degree of the graph。
2つ目の設定では、頂点のオラクルへの複数のクエリを許容し、それぞれが確率1/2 + \varepsilon$で正しい。
この設定では、$O(n/\varepsilon^2)$トータルクエリと$\tilde{O}(m)$ランタイムを使用して、$O(1)$-approximationアルゴリズムを示す。
関連論文リスト
- Gradient Descent is Pareto-Optimal in the Oracle Complexity and Memory Tradeoff for Feasibility Problems [0.0]
精度で実現可能な問題を解くために、決定論的アルゴリズムは$d1+delta$ bitsのメモリを使用するか、少なくとも$1/(d0.01delta epsilon2frac1-delta1+1.01 delta-o(1))$ Oracleクエリをしなければならない。
また、ランダム化アルゴリズムは$d1+delta$メモリを使用するか、少なくとも$$$$deltainに対して$1/(d2delta epsilon2(1-4delta)-o(1))$クエリを生成する。
論文 参考訳(メタデータ) (2024-04-10T04:15:50Z) - A quantum algorithm for learning a graph of bounded degree [1.8130068086063336]
本稿では,最大$tildeO(d2m3/4)$量子クエリにおいて,$G$のエッジを学習するアルゴリズムを提案する。
特に、確率の高い確率で$tildeO(sqrtm)$量子クエリでサイクルとマッチングを学習するランダム化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-28T21:23:40Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Learning Graph Partitions [2.3224617218247126]
グラフの連結成分への分割が与えられたとき、会員オラクルはグラフの任意の2つの頂点が同じ成分に含まれるか否かを主張する。
我々は$nge kge 2$の場合、$k$コンポーネントで$n$-vertex隠れグラフのコンポーネントを学ぶには、少なくとも$frac12(n-k)(k-1)$メンバシップクエリが必要であることを証明している。
論文 参考訳(メタデータ) (2021-12-15T05:28:45Z) - Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization
Domain [11.562923882714093]
Y f(x,y) における max_y の $min_x 形式の最適化問題における近似一階定常点の探索問題について検討する。
我々のアプローチは、関数 $f(x,cdot)$ を $k 次テイラー近似($y$ で)に置き換え、ほぼ定常点を $Y$ で見つけることに依存する。
論文 参考訳(メタデータ) (2021-10-08T07:46:18Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - Query complexity of heavy hitter estimation [6.373263986460191]
我々は、サブセット $mathcalSgamma_mathcalP$ を、基礎となる分布 $mathcalP$ をサポートする要素の特定の問題を考える。
それぞれのクエリはインデックス$i$であり、オラクルは値を$X_i$と$(b)$はペア$(i,j)$である。
それぞれの問合せモデルに対して、各ラウンドでどの問合せを全体に依存するかを決定するシーケンシャルな推定アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-05-29T07:15:46Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
本稿では,決定論的システムにおける関数近似を用いたQ$学習の問題について検討する。
もし$delta = Oleft(rho/sqrtdim_Eright)$なら、$Oleft(dim_Eright)$を使って最適なポリシーを見つけることができる。
論文 参考訳(メタデータ) (2020-02-17T18:41:49Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
Aaronson, Kothari, Kretschmer, Thaler (2020) が考える数え上げ問題の次の変種に対する厳密な下界を証明する。
このタスクは、入力セット$xsubseteq [n]$が$k$か$k'=(1+varepsilon)k$であるかどうかを識別する。
論文 参考訳(メタデータ) (2020-02-17T10:53:50Z) - Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast
Algorithm [100.11971836788437]
固定支持ワッサーシュタインバリセンタ問題(FS-WBP)について検討する。
我々は,有望な反復的ブレグマン射影 (IBP) アルゴリズムであるtextscFastIBP の,証明可能な高速なテキスト決定論的変種を開発する。
論文 参考訳(メタデータ) (2020-02-12T03:40:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。