論文の概要: Reliable Reasoning Beyond Natural Language
- arxiv url: http://arxiv.org/abs/2407.11373v2
- Date: Fri, 19 Jul 2024 18:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 11:30:02.581923
- Title: Reliable Reasoning Beyond Natural Language
- Title(参考訳): 自然言語を超えた信頼性の高い推論
- Authors: Nasim Borazjanizadeh, Steven T. Piantadosi,
- Abstract要約: 大きな言語モデル(LLM)は、しばしば、確実に柔軟に推論する能力の限界を示す。
本稿では,問題文から全ての関連情報を論理コード文として抽出し,エンコードする手法を提案する。
次に、論理型プログラミング言語(Prolog)を用いて、明示的な推論の反復的な計算を行う。
- 参考スコア(独自算出の注目度): 0.047888359248129786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their linguistic competence, Large Language models (LLMs) often exhibit limitations in their ability to reason reliably and flexibly. To address this, we propose a neurosymbolic approach that prompts LLMs to extract and encode all relevant information from a problem statement as logical code statements, and then use a logic programming language (Prolog) to conduct the iterative computations of explicit deductive reasoning. Our approach significantly enhances the performance of LLMs on the standard mathematical reasoning benchmark, GSM8k, and the Navigate dataset from the BIG-bench dataset. Additionally, we introduce a novel dataset, the Non-Linear Reasoning (NLR) dataset, consisting of 55 unique word problems that target the shortcomings of the next token prediction paradigm of LLMs and require complex non-linear reasoning but only basic arithmetic skills to solve. Our findings demonstrate that the integration of Prolog enables LLMs to achieve high performance on the NLR dataset, which even the most advanced language models (including GPT4) fail to solve using text only.
- Abstract(参考訳): 言語能力にもかかわらず、Large Language Model (LLM) はしばしば、信頼性と柔軟に推論する能力の限界を示す。
そこで本稿では,問題文からすべての関連情報を論理コード文として抽出・エンコードし,論理プログラム言語(Prolog)を用いて明示的帰納的推論の反復計算を行うニューロシンボリックアプローチを提案する。
提案手法は,標準的な数学的推論ベンチマークであるGSM8kと,BIG-benchデータセットからのNavigateデータセット上でのLCMの性能を大幅に向上させる。
さらに,LLMの次のトークン予測パラダイムの欠点を目標とし,複雑な非線形推論を必要とするが,解くための基本的な算術的スキルのみを必要とする,55のユニークな単語問題からなる新しいデータセットであるNon-Linear Reasoning (NLR)データセットを導入する。
以上の結果から,Prologの統合により,最上級言語モデル(GPT4を含む)でもテキストのみを用いて解けないNLRデータセット上でのLLMの高性能化が可能であることが示唆された。
関連論文リスト
- CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible
Pipeline [12.186691561822256]
我々は,大規模言語モデル(LLM)の本質的な性質が,数学的推論のモデル化における課題を提起していると仮定する。
本稿では,Pythonコードインタプリタを利用した新しい数学データセットを提案する。
本稿では,数学固有のLLMの微調整のための仮的かつ容易に複製可能なプロトコルを提案する。
論文 参考訳(メタデータ) (2024-01-16T08:08:01Z) - Zero-Shot Question Answering over Financial Documents using Large
Language Models [0.18749305679160366]
我々は,財務報告に対するマルチホップ数値推論を必要とする複雑な問題に答えるために,大規模言語モデル(LLM)に基づくアプローチを導入する。
LLMを誘導する新しいゼロショットプロンプトを使用して、必要な推論をPythonプログラムやドメイン固有言語にエンコードします。
論文 参考訳(メタデータ) (2023-11-19T16:23:34Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
自然言語ナラティブで指定されたソフト推論タスクの言語モデルを評価するデータセットである MuSR を紹介する。
このデータセットには2つの重要な特徴がある。まず、ニューロシンボリック合成-自然生成アルゴリズムによって生成される。
第二に、私たちのデータセットインスタンスは、実世界の推論の領域に対応する無料のテキスト物語です。
論文 参考訳(メタデータ) (2023-10-24T17:59:20Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Large Language Models as Data Preprocessors [10.914067455923847]
OpenAIのGPTシリーズとMetaのLLaMAに代表されるLarge Language Models (LLMs)は、人工知能において大きな進歩を遂げている。
この研究は、LLMの応用を拡大し、データ前処理におけるその可能性を探る。
我々は,最先端のプロンプト技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。