論文の概要: Semi-Supervised Generative Models for Disease Trajectories: A Case Study on Systemic Sclerosis
- arxiv url: http://arxiv.org/abs/2407.11427v1
- Date: Tue, 16 Jul 2024 06:45:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 16:22:29.732211
- Title: Semi-Supervised Generative Models for Disease Trajectories: A Case Study on Systemic Sclerosis
- Title(参考訳): 半監督型疾患軌跡生成モデル : 全身性硬化症を事例として
- Authors: Cécile Trottet, Manuel Schürch, Ahmed Allam, Imon Barua, Liubov Petelytska, Oliver Distler, Anna-Maria Hoffmann-Vold, Michael Krauthammer, the EUSTAR collaborators,
- Abstract要約: 複雑な疾患の軌跡をモデル化し, 全体解析するために, 潜時過程を用いた深部生成手法を提案する。
全身性硬化症の特徴の医学的定義と生成的アプローチを組み合わせることで,新たな疾患の発見が容易になる。
本研究は, SSc患者軌跡を新たなサブタイプに分類するなど, さらにデータ分析や臨床仮説の検証に, 学習時潜伏過程を活用できることを示唆する。
- 参考スコア(独自算出の注目度): 0.046435896353765535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a deep generative approach using latent temporal processes for modeling and holistically analyzing complex disease trajectories, with a particular focus on Systemic Sclerosis (SSc). We aim to learn temporal latent representations of the underlying generative process that explain the observed patient disease trajectories in an interpretable and comprehensive way. To enhance the interpretability of these latent temporal processes, we develop a semi-supervised approach for disentangling the latent space using established medical knowledge. By combining the generative approach with medical definitions of different characteristics of SSc, we facilitate the discovery of new aspects of the disease. We show that the learned temporal latent processes can be utilized for further data analysis and clinical hypothesis testing, including finding similar patients and clustering SSc patient trajectories into novel sub-types. Moreover, our method enables personalized online monitoring and prediction of multivariate time series with uncertainty quantification.
- Abstract(参考訳): 複雑な疾患の軌跡をモデル化・全体解析するために潜時過程を用いた深部生成法を提案し,特に全身性硬化症(SSc)に焦点を当てた。
本研究の目的は、患者疾患の軌跡を解釈可能かつ包括的に説明するための、根底にある生成過程の時間的潜在表現を学習することである。
そこで我々は,これらの潜伏時間過程の解釈可能性を高めるために,確立された医療知識を用いて潜伏空間を遠ざけるための半教師付きアプローチを開発した。
SScの異なる特徴の医学的定義と生成的アプローチを組み合わせることで,病の新たな側面の発見が容易になる。
本研究は, SSc患者軌跡を新たなサブタイプに分類するなど, さらにデータ分析や臨床仮説の検証に, 学習時潜伏過程を活用できることを示唆する。
さらに、不確実な定量化を伴う多変量時系列のパーソナライズされたオンラインモニタリングと予測を可能にする。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Mapping Patient Trajectories: Understanding and Visualizing Sepsis Prognostic Pathways from Patients Clinical Narratives [2.3383924361298876]
本稿では,臨床ノートから得られた敗血症予後経路の体系的手法を提案する。
これらの経路を可視化することは、様々な状況における病気の進行の可能性と方向性に光を当てる。
これにより、医療提供者は個別の患者に対してよりパーソナライズされ効果的な医療戦略を実施することができる。
論文 参考訳(メタデータ) (2024-07-20T14:45:55Z) - TE-SSL: Time and Event-aware Self Supervised Learning for Alzheimer's Disease Progression Analysis [6.6584447062231895]
アルツハイマー認知症(Alzheimer's Dementia、AD)は、神経変性疾患の分野で最も急激な課題の一つである。
近年の深層学習の進歩と、自己教師付き学習(SSL)を含む様々な表現学習戦略は、医用画像解析の強化に大きく貢献している。
本稿では,タイム・アンド・イブ・アウェア・SSL(TE-SSL)という新たなフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T13:41:32Z) - Modeling Complex Disease Trajectories using Deep Generative Models with
Semi-Supervised Latent Processes [0.04818215922729969]
我々は、確立された医療概念を用いて、潜伏空間を遠ざけるための半教師付きアプローチを開発する。
学習した時間潜伏過程を,さらなるデータ分析と臨床仮説テストに活用できることが示唆された。
論文 参考訳(メタデータ) (2023-11-14T13:25:41Z) - A New Deep State-Space Analysis Framework for Patient Latent State
Estimation and Classification from EHR Time Series Data [1.0970480513577103]
深部状態空間モデルを用いたERHの時系列教師なし学習を用いた「深部状態空間解析フレームワーク」を提案する。
このフレームワークは、病気の進行に関連する患者潜伏状態における時間的変化の学習、可視化、およびクラスタリングを可能にする。
12,695人のがん患者の時系列検査データを用いて,本フレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-07-21T10:45:08Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - A Deep Variational Approach to Clustering Survival Data [5.871238645229228]
変分深層クラスタリングにおけるクラスタサバイバルデータに対する新しい確率的アプローチを提案する。
提案手法は,説明変数と潜在的に検閲された生存時間の両方の分布を明らかにするために,深い生成モデルを用いている。
論文 参考訳(メタデータ) (2021-06-10T14:10:25Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。