論文の概要: Mapping Patient Trajectories: Understanding and Visualizing Sepsis Prognostic Pathways from Patients Clinical Narratives
- arxiv url: http://arxiv.org/abs/2407.21039v1
- Date: Sat, 20 Jul 2024 14:45:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 00:36:46.242264
- Title: Mapping Patient Trajectories: Understanding and Visualizing Sepsis Prognostic Pathways from Patients Clinical Narratives
- Title(参考訳): 患者軌跡のマッピング:臨床診断者からの敗血症発生経路の理解と可視化
- Authors: Sudeshna Jana, Tirthankar Dasgupta, Lipika Dey,
- Abstract要約: 本稿では,臨床ノートから得られた敗血症予後経路の体系的手法を提案する。
これらの経路を可視化することは、様々な状況における病気の進行の可能性と方向性に光を当てる。
これにより、医療提供者は個別の患者に対してよりパーソナライズされ効果的な医療戦略を実施することができる。
- 参考スコア(独自算出の注目度): 2.3383924361298876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, healthcare professionals are increasingly emphasizing on personalized and evidence-based patient care through the exploration of prognostic pathways. To study this, structured clinical variables from Electronic Health Records (EHRs) data have traditionally been employed by many researchers. Presently, Natural Language Processing models have received great attention in clinical research which expanded the possibilities of using clinical narratives. In this paper, we propose a systematic methodology for developing sepsis prognostic pathways derived from clinical notes, focusing on diverse patient subgroups identified by exploring comorbidities associated with sepsis and generating explanations of these subgroups using SHAP. The extracted prognostic pathways of these subgroups provide valuable insights into the dynamic trajectories of sepsis severity over time. Visualizing these pathways sheds light on the likelihood and direction of disease progression across various contexts and reveals patterns and pivotal factors or biomarkers influencing the transition between sepsis stages, whether toward deterioration or improvement. This empowers healthcare providers to implement more personalized and effective healthcare strategies for individual patients.
- Abstract(参考訳): 近年、医療専門家は、予後経路の探索を通じて、パーソナライズされた、エビデンスに基づく患者ケアに重点を置いている。
これを研究するために、電子健康記録(EHR)データからの構造化された臨床変数が伝統的に多くの研究者によって採用されてきた。
現在、自然言語処理モデルは臨床研究において大きな注目を集めており、臨床物語の使用の可能性を広げている。
本稿では,臨床ノートから派生した敗血症予後経路の体系的手法を提案し,敗血症に関連する合併症を探索し,これらのサブグループをSHAPを用いて説明することによって同定した多様な患者サブグループに着目した。
これらのサブグループの抽出された予後経路は、時間とともにセプシスの重症度の動的な軌跡について貴重な洞察を与える。
これらの経路を可視化することは、様々な状況で病気の進行の可能性と方向性に光を当て、劣化または改善のいずれかにかかわらず、敗血症ステージ間の遷移に影響を与えるパターンや重要な要因やバイオマーカーを明らかにする。
これにより、医療提供者は個別の患者に対してよりパーソナライズされ効果的な医療戦略を実施することができる。
関連論文リスト
- Semi-Supervised Generative Models for Disease Trajectories: A Case Study on Systemic Sclerosis [0.04057716989497714]
複雑な疾患の軌跡をモデル化し, 全体解析するために, 潜時過程を用いた深部生成手法を提案する。
全身性硬化症の特徴の医学的定義と生成的アプローチを組み合わせることで,新たな疾患の発見が容易になる。
本研究は, SSc患者軌跡を新たなサブタイプに分類するなど, さらにデータ分析や臨床仮説の検証に, 学習時潜伏過程を活用できることを示唆する。
論文 参考訳(メタデータ) (2024-07-16T06:45:27Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Approaching adverse event detection utilizing transformers on clinical
time-series [0.0]
北ランド病院トラスト(NHT)から得られた16ヶ月のバイタルサイン記録の分析を行った。
我々はSTraTSトランスフォーマーアーキテクチャに基づく自己教師型フレームワークを用いて,遅延空間における時系列データを表現した。
これらの表現は、臨床経過に基づいて、潜在的な患者表現型を探索するために、様々なクラスタリング手法を適用された。
論文 参考訳(メタデータ) (2023-11-15T18:05:31Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Framework based on complex networks to model and mine patient pathways [0.6749750044497732]
いわゆる「患者の道」は、臨床および組織的な決定を支援する新しい研究分野である。
i) マルチアスペクトグラフに基づく経路モデル, (ii) 経過時間を考慮した経路比較のための新しい相似性測定, および (iii) 経路の最も関連性の高いステップを発見するための従来の集中度尺度に基づくマイニング手法からなるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-25T15:11:52Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - Modelling and Mining of Patient Pathways: A Scoping Review [0.09176056742068812]
電子的健康データ提供の台頭により、多数の患者の経路を評価することが可能になった。
これらの経路をどのように合成するか、データからどのようにマイニングするかについても、いくつかの課題が持ち上がった。
本研究の目的は, この新たな研究分野を探求し, 表現モデル, 鉱業技術, 分析方法, 事例研究の例を紹介することである。
論文 参考訳(メタデータ) (2022-06-04T12:44:24Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。