Multi-Channel Masked Autoencoder and Comprehensive Evaluations for Reconstructing 12-Lead ECG from Arbitrary Single-Lead ECG
- URL: http://arxiv.org/abs/2407.11481v1
- Date: Tue, 16 Jul 2024 08:17:45 GMT
- Title: Multi-Channel Masked Autoencoder and Comprehensive Evaluations for Reconstructing 12-Lead ECG from Arbitrary Single-Lead ECG
- Authors: Jiarong Chen, Wanqing Wu, Tong Liu, Shenda Hong,
- Abstract summary: This study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-lead ECG from the real single-lead ECG.
In the experimental results, the visualized results between the generated and real signals can demonstrate the effectiveness of the proposed framework.
This study introduces a comprehensive evaluation benchmark named ECGGenEval, encompassing the signal-level, feature-level, and diagnostic-level evaluations.
- Score: 19.74009541199362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of cardiovascular diseases (CVD) that exhibit an elevated prevalence and mortality, the electrocardiogram (ECG) is a popular and standard diagnostic tool for doctors, commonly utilizing a 12-lead configuration in clinical practice. However, the 10 electrodes placed on the surface would cause a lot of inconvenience and discomfort, while the rapidly advancing wearable devices adopt the reduced-lead or single-lead ECG to reduce discomfort as a solution in long-term monitoring. Since the single-lead ECG is a subset of 12-lead ECG, it provides insufficient cardiac health information and plays a substandard role in real-world healthcare applications. Hence, it is necessary to utilize signal generation technologies to reduce their clinical importance gap by reconstructing 12-lead ECG from the real single-lead ECG. Specifically, this study proposes a multi-channel masked autoencoder (MCMA) for this goal. In the experimental results, the visualized results between the generated and real signals can demonstrate the effectiveness of the proposed framework. At the same time, this study introduces a comprehensive evaluation benchmark named ECGGenEval, encompassing the signal-level, feature-level, and diagnostic-level evaluations, providing a holistic assessment of 12-lead ECG signals and generative model. Further, the quantitative experimental results are as follows, the mean square errors of 0.0178 and 0.0658, correlation coefficients of 0.7698 and 0.7237 in the signal-level evaluation, the average F1-score with two generated 12-lead ECG is 0.8319 and 0.7824 in the diagnostic-level evaluation, achieving the state-of-the-art performance. The open-source code is publicly available at \url{https://github.com/CHENJIAR3/MCMA}.
Related papers
- TolerantECG: A Foundation Model for Imperfect Electrocardiogram [6.8878798499351]
TolerantECG is a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG.<n>TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations.<n> benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions.
arXiv Detail & Related papers (2025-07-14T03:48:35Z) - Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
Heartcare Suite is a framework for fine-grained electrocardiogram (ECG) understanding.<n>Heartcare-220K is a high-quality, structured, and comprehensive multimodal ECG dataset.<n>Heartcare-Bench is a benchmark to guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios.
arXiv Detail & Related papers (2025-06-06T07:56:41Z) - Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment [71.69065905466567]
Pulmonary hypertension (PH) is frequently underdiagnosed in low- and middle-income countries (LMICs) due to the scarcity of advanced diagnostic tools.
We propose Lead-Specific Electrocardiogram Multimodal Variational Autoencoder (LS-EMVAE), a model pre-trained on large-population 12L-ECG data.
LS-EMVAE makes better predictions on both 12L-ECG and 6L-ECG at inference, making it an equitable solution for areas with limited or no diagnostic tools.
arXiv Detail & Related papers (2025-03-03T16:16:38Z) - AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings [34.078819572852446]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.
This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification.
Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system.
With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets.
arXiv Detail & Related papers (2022-08-15T09:33:36Z) - A Mixed-Domain Self-Attention Network for Multilabel Cardiac
Irregularity Classification Using Reduced-Lead Electrocardiogram [10.351641831500924]
This study proposes Mixed-Domain Self-Attention Resnet (MDARsn) to identify cardiac abnormalities from reduced-lead ECG.
Our classifiers received scores of 0.602, 0.593, 0.597, 0.591, and 0.589 for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden validation set.
arXiv Detail & Related papers (2022-04-29T07:35:08Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Synthesis of standard 12-lead electrocardiograms using two dimensional
generative adversarial network [0.0]
The proposed model is able to produce synthetic standard 12-lead ECG signals with success rates of 98% for LVH, 93% for LBBB, 79% for ACUTMI, and 59% for Normal.
It is feasible to use a 2D GAN to produce standard 12-lead ECGs suitable to augment artificially a diverse database of real ECGs.
arXiv Detail & Related papers (2021-06-02T00:59:04Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
We developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings.
The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813.
The best-performing leads are lead I, aVR, and V5 among 12 leads.
arXiv Detail & Related papers (2020-10-20T14:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.