Haze-Aware Attention Network for Single-Image Dehazing
- URL: http://arxiv.org/abs/2407.11505v1
- Date: Tue, 16 Jul 2024 08:42:39 GMT
- Title: Haze-Aware Attention Network for Single-Image Dehazing
- Authors: Lihan Tong, Yun Liu, Weijia Li, Liyuan Chen, Erkang Chen,
- Abstract summary: We propose a new dehazing network combining an innovative Haze-Aware Attention Module (HAAM) with a Multiscale Frequency Enhancement Module (MFEM)
The HAAM is inspired by the atmospheric scattering model, thus skillfully integrating physical principles into high-dimensional features for targeted dehazing.
Our work not only advances the field of image dehazing but also offers insights into the design of attention mechanisms for broader applications in computer vision.
- Score: 10.881567541939653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-image dehazing is a pivotal challenge in computer vision that seeks to remove haze from images and restore clean background details. Recognizing the limitations of traditional physical model-based methods and the inefficiencies of current attention-based solutions, we propose a new dehazing network combining an innovative Haze-Aware Attention Module (HAAM) with a Multiscale Frequency Enhancement Module (MFEM). The HAAM is inspired by the atmospheric scattering model, thus skillfully integrating physical principles into high-dimensional features for targeted dehazing. It picks up on latent features during the image restoration process, which gives a significant boost to the metrics, while the MFEM efficiently enhances high-frequency details, thus sidestepping wavelet or Fourier transform complexities. It employs multiscale fields to extract and emphasize key frequency components with minimal parameter overhead. Integrated into a simple U-Net framework, our Haze-Aware Attention Network (HAA-Net) for single-image dehazing significantly outperforms existing attention-based and transformer models in efficiency and effectiveness. Tested across various public datasets, the HAA-Net sets new performance benchmarks. Our work not only advances the field of image dehazing but also offers insights into the design of attention mechanisms for broader applications in computer vision.
Related papers
- DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm [3.649619954898362]
Detail Recovery And Contrastive DehazeNet is a detailed image recovery network that tailors enhancements to specific dehazed scene contexts.
A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm.
arXiv Detail & Related papers (2024-10-18T16:48:31Z) - PriorNet: A Novel Lightweight Network with Multidimensional Interactive Attention for Efficient Image Dehazing [8.837086917206525]
Hazy images degrade visual quality, and dehazing is a crucial prerequisite for subsequent processing tasks.
This paper introduces PriorNet, a novel, lightweight, and highly applicable dehazing network.
The core of PriorNet is the original Multi-Dimensional Interactive Attention (MIA) mechanism, which effectively captures a wide range of haze characteristics.
arXiv Detail & Related papers (2024-04-24T04:20:22Z) - MaeFuse: Transferring Omni Features with Pretrained Masked Autoencoders for Infrared and Visible Image Fusion via Guided Training [57.18758272617101]
MaeFuse is a novel autoencoder model designed for infrared and visible image fusion (IVIF)
Our model utilizes a pretrained encoder from Masked Autoencoders (MAE), which facilities the omni features extraction for low-level reconstruction and high-level vision tasks.
MaeFuse not only introduces a novel perspective in the realm of fusion techniques but also stands out with impressive performance across various public datasets.
arXiv Detail & Related papers (2024-04-17T02:47:39Z) - Empowering Image Recovery_ A Multi-Attention Approach [96.25892659985342]
Diverse Restormer (DART) is an image restoration method that integrates information from various sources to address restoration challenges.
DART employs customized attention mechanisms to enhance overall performance.
evaluation across five restoration tasks consistently positions DART at the forefront.
arXiv Detail & Related papers (2024-04-06T12:50:08Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising.
We propose a new Hybrid Attention Transformer (HAT) to activate more input pixels for better restoration.
Our HAT achieves state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-09-11T05:17:55Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - A Dive into SAM Prior in Image Restoration [40.03648504115027]
The goal of image restoration (IR) is to restore a high-quality (HQ) image from its degraded low-quality (LQ) observation.
We propose a lightweight SAM prior tuning (SPT) unit to integrate semantic priors into existing IR networks.
As the only trainable module in our method, the SPT unit has the potential to improve both efficiency and scalability.
arXiv Detail & Related papers (2023-05-23T02:31:06Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
We present a novel model for large hole inpainting, which unifies the merits of transformers and convolutions.
Experiments demonstrate the state-of-the-art performance of the new model on multiple benchmark datasets.
arXiv Detail & Related papers (2022-03-29T06:36:17Z) - Contrastive Learning for Compact Single Image Dehazing [41.83007400559068]
We propose a novel contrastive regularization (CR) built upon contrastive learning to exploit both the information of hazy images and clear images as negative and positive samples.
CR ensures that the restored image is pulled to closer to the clear image and pushed to far away from the hazy image in the representation space.
Considering trade-off between performance and memory storage, we develop a compact dehazing network based on autoencoder-like framework.
arXiv Detail & Related papers (2021-04-19T14:56:21Z) - Efficient and Accurate Multi-scale Topological Network for Single Image
Dehazing [31.543771270803056]
In this paper, we pay attention to the feature extraction and utilization of the input image itself.
We propose a Multi-scale Topological Network (MSTN) to fully explore the features at different scales.
Meanwhile, we design a Multi-scale Feature Fusion Module (MFFM) and an Adaptive Feature Selection Module (AFSM) to achieve the selection and fusion of features at different scales.
arXiv Detail & Related papers (2021-02-24T08:53:14Z) - Single Image Deraining via Scale-space Invariant Attention Neural
Network [58.5284246878277]
We tackle the notion of scale that deals with visual changes in appearance of rain steaks with respect to the camera.
We propose to represent the multi-scale correlation in convolutional feature domain, which is more compact and robust than that in pixel domain.
In this way, we summarize the most activated presence of feature maps as the salient features.
arXiv Detail & Related papers (2020-06-09T04:59:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.