PriorNet: A Novel Lightweight Network with Multidimensional Interactive Attention for Efficient Image Dehazing
- URL: http://arxiv.org/abs/2404.15638v1
- Date: Wed, 24 Apr 2024 04:20:22 GMT
- Title: PriorNet: A Novel Lightweight Network with Multidimensional Interactive Attention for Efficient Image Dehazing
- Authors: Yutong Chen, Zhang Wen, Chao Wang, Lei Gong, Zhongchao Yi,
- Abstract summary: Hazy images degrade visual quality, and dehazing is a crucial prerequisite for subsequent processing tasks.
This paper introduces PriorNet, a novel, lightweight, and highly applicable dehazing network.
The core of PriorNet is the original Multi-Dimensional Interactive Attention (MIA) mechanism, which effectively captures a wide range of haze characteristics.
- Score: 8.837086917206525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hazy images degrade visual quality, and dehazing is a crucial prerequisite for subsequent processing tasks. Most current dehazing methods rely on neural networks and face challenges such as high computational parameter pressure and weak generalization capabilities. This paper introduces PriorNet--a novel, lightweight, and highly applicable dehazing network designed to significantly improve the clarity and visual quality of hazy images while avoiding excessive detail extraction issues. The core of PriorNet is the original Multi-Dimensional Interactive Attention (MIA) mechanism, which effectively captures a wide range of haze characteristics, substantially reducing the computational load and generalization difficulties associated with complex systems. By utilizing a uniform convolutional kernel size and incorporating skip connections, we have streamlined the feature extraction process. Simplifying the number of layers and architecture not only enhances dehazing efficiency but also facilitates easier deployment on edge devices. Extensive testing across multiple datasets has demonstrated PriorNet's exceptional performance in dehazing and clarity restoration, maintaining image detail and color fidelity in single-image dehazing tasks. Notably, with a model size of just 18Kb, PriorNet showcases superior dehazing generalization capabilities compared to other methods. Our research makes a significant contribution to advancing image dehazing technology, providing new perspectives and tools for the field and related domains, particularly emphasizing the importance of improving universality and deployability.
Related papers
- DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm [3.649619954898362]
Detail Recovery And Contrastive DehazeNet is a detailed image recovery network that tailors enhancements to specific dehazed scene contexts.
A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm.
arXiv Detail & Related papers (2024-10-18T16:48:31Z) - Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
Recent advancements in Neural Surface Reconstruction (NSR) have significantly improved multi-view reconstruction when coupled with volume rendering.
We propose an investigation into feature-level consistent loss, aiming to harness valuable feature priors from diverse pretext visual tasks.
Our results, analyzed on DTU and EPFL, reveal that feature priors from image matching and multi-view stereo datasets outperform other pretext tasks.
arXiv Detail & Related papers (2024-08-04T16:09:46Z) - Haze-Aware Attention Network for Single-Image Dehazing [10.881567541939653]
We propose a new dehazing network combining an innovative Haze-Aware Attention Module (HAAM) with a Multiscale Frequency Enhancement Module (MFEM)
The HAAM is inspired by the atmospheric scattering model, thus skillfully integrating physical principles into high-dimensional features for targeted dehazing.
Our work not only advances the field of image dehazing but also offers insights into the design of attention mechanisms for broader applications in computer vision.
arXiv Detail & Related papers (2024-07-16T08:42:39Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
We propose a purposeful and interpretable detail-fidelity attention network to progressively process smoothes and details in divide-and-conquer manner.
Particularly, we propose a Hessian filtering for interpretable feature representation which is high-profile for detail inference.
Experiments demonstrate that the proposed methods achieve superior performances over the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T08:31:23Z) - Single Image Deraining via Scale-space Invariant Attention Neural
Network [58.5284246878277]
We tackle the notion of scale that deals with visual changes in appearance of rain steaks with respect to the camera.
We propose to represent the multi-scale correlation in convolutional feature domain, which is more compact and robust than that in pixel domain.
In this way, we summarize the most activated presence of feature maps as the salient features.
arXiv Detail & Related papers (2020-06-09T04:59:26Z) - Image super-resolution reconstruction based on attention mechanism and
feature fusion [3.42658286826597]
A network structure based on attention mechanism and multi-scale feature fusion is proposed.
Experimental results show that the proposed method can achieve better performance over other representative super-resolution reconstruction algorithms.
arXiv Detail & Related papers (2020-04-08T11:20:10Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.