論文の概要: Optimizing KV Cache Eviction in LLMs: Adaptive Allocation for Enhanced Budget Utilization
- arxiv url: http://arxiv.org/abs/2407.11550v1
- Date: Tue, 16 Jul 2024 09:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 15:42:36.527422
- Title: Optimizing KV Cache Eviction in LLMs: Adaptive Allocation for Enhanced Budget Utilization
- Title(参考訳): LLMにおけるKVキャッシュの最適化:予算削減のための適応配置
- Authors: Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, S. Kevin Zhou,
- Abstract要約: 大規模言語モデルは様々な分野で優れているが、推論に必要な広範なKVキャッシュのために効率の限界に直面している。
本稿では, 従来の一様割当手法よりも上限の損失を理論的に保証するだけでなく, 自己アテンション機構の特性と効果的に整合する, 単純かつ効果的な適応割当アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 19.447729423696096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models have excelled in various fields but encounter efficiency limitations due to the extensive KV cache required for long sequences inference. Many efforts try to evict non-critical cache elements during runtime, thereby reducing cache size within a given memory budget while preserving generation quality. Our reexamination of their underlying principles discerns that prevailing strategies essentially aim to minimize an upper bound of eviction loss within a specific budget allocation. However, we observe that the current practice of uniformly allocating budgets across different attention heads during the eviction procedure tends to degrade the quality of generation posten-eviction. In light of these findings, we propose a simple yet effective adaptive allocation algorithm that not only theoretically ensures its loss upper bound does not exceed that of previous uniform allocation methods, but also effectively aligns with the characteristics of the self-attention mechanism, thus practically reducing the upper bound. Further, integrating this algorithm with two of the most advanced methods yields Ada-SnapKV and Ada-Pyramid. Extensive experimental validation across 16 datasets and the Needle-in-a-Haystack test confirm that Ada-SnapKV and Ada-Pyramid achieve further enhancements, establishing new benchmarks in state-of-the-art performance.
- Abstract(参考訳): 大規模言語モデルは様々な分野で優れているが、長いシーケンス推論に必要な広範なKVキャッシュのために効率の限界に直面している。
多くの取り組みは、実行中に非クリティカルなキャッシュ要素を排除し、生成品質を維持しながら、所定のメモリ予算内でキャッシュサイズを削減しようとしている。
我々の根底にある原則の再検討は、戦略が基本的に特定の予算配分内での排除損失の上限の上限を最小化することを目的としていることを明確にしている。
しかし,現在実施されている,異なる注意点にまたがる予算均等化の実践は,世代別ポストエミッションの質を低下させる傾向にある。
これらの結果を踏まえ, 従来の一様割当手法の損失上限を理論的に超過せず, 自己保持機構の特性と効果的に整合し, 上限を実質的に低減する, 単純かつ効果的な適応的割当アルゴリズムを提案する。
さらに、このアルゴリズムを最も進んだ2つの方法に統合すると、Ada-SnapKVとAda-Pyramidが得られる。
16のデータセットとNeedle-in-a-Haystackテストにわたる大規模な実験的検証は、Ada-SnapKVとAda-Pyramidがさらなる拡張を実現し、最先端のパフォーマンスの新たなベンチマークを確立することを確認している。
関連論文リスト
- SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation [28.78295040602572]
SCOPEは、プリフィルとデコードフェーズでKVキャッシュを最適化するフレームワークである。
メモリ使用量とメモリ転送は、適応的かつ不連続な戦略によってさらに最適化される。
LongGenBenchの実験はSCOPEの有効性と一般化を示している。
論文 参考訳(メタデータ) (2024-12-18T09:27:33Z) - Cross-Self KV Cache Pruning for Efficient Vision-Language Inference [19.062950348441426]
KVキャッシュプルーニングは、長文自動回帰生成におけるメモリと計算コストを削減するための有望な手法として登場した。
我々は、注意スコアをモダリティ内注意(同じモダリティ)とモダリティ間注意(全体モダリティ)に分解することを提案する。
最終的なトレーニング不要手法である textbfCross-textbfSelf textbfPruning (CSP) は、完全なKVキャッシュを持つモデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-05T22:47:17Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。