論文の概要: Optimizing KV Cache Eviction in LLMs: Adaptive Allocation for Enhanced Budget Utilization
- arxiv url: http://arxiv.org/abs/2407.11550v1
- Date: Tue, 16 Jul 2024 09:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 15:42:36.527422
- Title: Optimizing KV Cache Eviction in LLMs: Adaptive Allocation for Enhanced Budget Utilization
- Title(参考訳): LLMにおけるKVキャッシュの最適化:予算削減のための適応配置
- Authors: Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, S. Kevin Zhou,
- Abstract要約: 大規模言語モデルは様々な分野で優れているが、推論に必要な広範なKVキャッシュのために効率の限界に直面している。
本稿では, 従来の一様割当手法よりも上限の損失を理論的に保証するだけでなく, 自己アテンション機構の特性と効果的に整合する, 単純かつ効果的な適応割当アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 19.447729423696096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models have excelled in various fields but encounter efficiency limitations due to the extensive KV cache required for long sequences inference. Many efforts try to evict non-critical cache elements during runtime, thereby reducing cache size within a given memory budget while preserving generation quality. Our reexamination of their underlying principles discerns that prevailing strategies essentially aim to minimize an upper bound of eviction loss within a specific budget allocation. However, we observe that the current practice of uniformly allocating budgets across different attention heads during the eviction procedure tends to degrade the quality of generation posten-eviction. In light of these findings, we propose a simple yet effective adaptive allocation algorithm that not only theoretically ensures its loss upper bound does not exceed that of previous uniform allocation methods, but also effectively aligns with the characteristics of the self-attention mechanism, thus practically reducing the upper bound. Further, integrating this algorithm with two of the most advanced methods yields Ada-SnapKV and Ada-Pyramid. Extensive experimental validation across 16 datasets and the Needle-in-a-Haystack test confirm that Ada-SnapKV and Ada-Pyramid achieve further enhancements, establishing new benchmarks in state-of-the-art performance.
- Abstract(参考訳): 大規模言語モデルは様々な分野で優れているが、長いシーケンス推論に必要な広範なKVキャッシュのために効率の限界に直面している。
多くの取り組みは、実行中に非クリティカルなキャッシュ要素を排除し、生成品質を維持しながら、所定のメモリ予算内でキャッシュサイズを削減しようとしている。
我々の根底にある原則の再検討は、戦略が基本的に特定の予算配分内での排除損失の上限の上限を最小化することを目的としていることを明確にしている。
しかし,現在実施されている,異なる注意点にまたがる予算均等化の実践は,世代別ポストエミッションの質を低下させる傾向にある。
これらの結果を踏まえ, 従来の一様割当手法の損失上限を理論的に超過せず, 自己保持機構の特性と効果的に整合し, 上限を実質的に低減する, 単純かつ効果的な適応的割当アルゴリズムを提案する。
さらに、このアルゴリズムを最も進んだ2つの方法に統合すると、Ada-SnapKVとAda-Pyramidが得られる。
16のデータセットとNeedle-in-a-Haystackテストにわたる大規模な実験的検証は、Ada-SnapKVとAda-Pyramidがさらなる拡張を実現し、最先端のパフォーマンスの新たなベンチマークを確立することを確認している。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - In-context KV-Cache Eviction for LLMs via Attention-Gate [12.732519329131392]
KVキャッシュ技術は、大規模言語モデル(LLM)の推論の標準となっている。
本稿では,Attention-Gateと呼ばれるパラメータ化KVキャッシュ消去機構を考案する。
Attention-Gateは、コンテキスト全体を入力として受け入れ、各トークンにエビテーションフラグを出力して、インコンテキストのエビエーションを実現する。
論文 参考訳(メタデータ) (2024-10-15T05:01:19Z) - NACL: A General and Effective KV Cache Eviction Framework for LLMs at Inference Time [44.89402186438295]
大規模言語モデル(LLM)は、AIアプリケーションの革新的な急増に火をつけ、拡張されたコンテキストウィンドウを備えたエキサイティングな可能性の新たな時代を告げた。
しかし、これらのモデルのホスティングは、主に長期のコンテキストモデリングを含むKVキャッシュの広範なメモリ消費のため、コストを抑えることができる。
我々は,符号化フェーズにおける単一操作において,より最適かつ効率的な消去を実現する,長文KVキャッシュ消去のための一般的なフレームワークであるNACLを提案する。
論文 参考訳(メタデータ) (2024-08-07T10:31:07Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - D2O: Dynamic Discriminative Operations for Efficient Generative Inference of Large Language Models [14.665924387149014]
LLM(Large Language Models)における効率的な推論は、キー値(KV)キャッシュのメモリ要求の増加によって妨げられる。
従来のKVキャッシュ消去戦略は、注意点に基づく重要度の低いKVペアを優先し、コンテキスト損失や幻覚などの問題を引き起こす。
本稿では,KVキャッシュサイズを微調整せずに最適化するための2段階判別手法である動的識別操作(D2O)を紹介する。
論文 参考訳(メタデータ) (2024-06-18T20:01:51Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - Stochastic Hard Thresholding Algorithms for AUC Maximization [49.00683387735522]
分散分類におけるAUCのためのハードしきい値決定アルゴリズムを開発した。
提案アルゴリズムの有効性と有効性を示す実験を行った。
論文 参考訳(メタデータ) (2020-11-04T16:49:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。