論文の概要: Ada-KV: Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM Inference
- arxiv url: http://arxiv.org/abs/2407.11550v2
- Date: Sun, 21 Jul 2024 14:08:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:02:42.590778
- Title: Ada-KV: Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM Inference
- Title(参考訳): Ada-KV:効率的なLLM推論のための適応的予算割当によるKVキャッシュ推定の最適化
- Authors: Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, S. Kevin Zhou,
- Abstract要約: 大規模言語モデルは様々な分野で優れていますが、推論に必要なキーバリュー(KV)キャッシュのために効率の限界に直面しています。
最近の取り組みでは、実行中に非クリティカルなキャッシュ要素を排除し、生成品質を維持しながら、所定のメモリ予算内でのキャッシュサイズを削減しようとしている。
本稿では, 単純かつ効果的な適応型予算割当アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 19.447729423696096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models have excelled in various fields but encounter efficiency limitations due to the substantial Key-Value (KV) cache required for long-sequence inference. Recent efforts try to evict non-critical cache elements during runtime, thereby reducing cache size within given memory budgets while preserving generation quality. Our reexamination of foundational principles reveals that prevailing methods aim to minimize an upper bound of eviction loss, quantified as the L1 distance between the pre- and post-eviction outputs of multi-head self-attention mechanisms. Moreover, our analysis indicates that the common practices of uniformly assigning budgets across different attention heads during cache eviction hinder their budget utilization, negatively impacting generation quality. In light of these findings, we propose a simple yet effective adaptive budget allocation algorithm. This algorithm not only optimizes the loss upper bound in theory but also reduces the eviction loss in practice by aligning with the intrinsic patterns of self-attention mechanisms. Integrating this algorithm into two advanced methods, we develop Ada-SnapKV and Ada-Pyramid. Extensive evaluations on 16 datasets and the Needle-in-a-Haystack test confirm that they both significantly boost performance across various tasks.
- Abstract(参考訳): 大規模言語モデルは様々な分野で優れていますが、長いシーケンス推論に必要なキーバリュー(KV)キャッシュのために効率の限界に直面しています。
最近の取り組みでは、実行中に非クリティカルなキャッシュ要素を排除し、生成品質を維持しながら、所定のメモリ予算内でのキャッシュサイズを削減しようとしている。
基本原理の再検討により,多頭部自己認識機構の事前推定出力と後推定出力とのL1距離として定量化され,高次消去損失の上限を最小化することを目的としていることが明らかとなった。
さらに,キャッシュ消去時に異なる注意点にまたがる予算を均一に割り当てるという一般的な手法は,その予算利用を阻害し,生成品質に悪影響を及ぼすことが示唆された。
これらの結果を踏まえて, 単純かつ効果的な適応型予算割当アルゴリズムを提案する。
このアルゴリズムは、理論上界の損失を最適化するだけでなく、本質的な自己認識機構のパターンと整合させることにより、現実の逸脱を減らす。
このアルゴリズムを2つの高度な手法に統合し、Ada-SnapKVとAda-Pyramidを開発した。
16のデータセットとNeedle-in-a-Haystackテストに対する大規模な評価は、どちらもさまざまなタスクのパフォーマンスを大幅に向上させることを確認した。
関連論文リスト
- SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation [28.78295040602572]
SCOPEは、プリフィルとデコードフェーズでKVキャッシュを最適化するフレームワークである。
メモリ使用量とメモリ転送は、適応的かつ不連続な戦略によってさらに最適化される。
LongGenBenchの実験はSCOPEの有効性と一般化を示している。
論文 参考訳(メタデータ) (2024-12-18T09:27:33Z) - Cross-Self KV Cache Pruning for Efficient Vision-Language Inference [19.062950348441426]
KVキャッシュプルーニングは、長文自動回帰生成におけるメモリと計算コストを削減するための有望な手法として登場した。
我々は、注意スコアをモダリティ内注意(同じモダリティ)とモダリティ間注意(全体モダリティ)に分解することを提案する。
最終的なトレーニング不要手法である textbfCross-textbfSelf textbfPruning (CSP) は、完全なKVキャッシュを持つモデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-05T22:47:17Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。