SFPNet: Sparse Focal Point Network for Semantic Segmentation on General LiDAR Point Clouds
- URL: http://arxiv.org/abs/2407.11569v1
- Date: Tue, 16 Jul 2024 10:22:09 GMT
- Title: SFPNet: Sparse Focal Point Network for Semantic Segmentation on General LiDAR Point Clouds
- Authors: Yanbo Wang, Wentao Zhao, Chuan Cao, Tianchen Deng, Jingchuan Wang, Weidong Chen,
- Abstract summary: We propose a framework to accommodate various types of LiDAR prevalent in the market by replacing window-attention with sparse focal point modulation.
Our SFPNet is capable of extracting multi-level contexts and dynamically aggregating them using a gate mechanism.
We also introduce a novel large-scale hybrid-solid LiDAR semantic segmentation dataset for robotic applications.
- Score: 13.097858142421519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although LiDAR semantic segmentation advances rapidly, state-of-the-art methods often incorporate specifically designed inductive bias derived from benchmarks originating from mechanical spinning LiDAR. This can limit model generalizability to other kinds of LiDAR technologies and make hyperparameter tuning more complex. To tackle these issues, we propose a generalized framework to accommodate various types of LiDAR prevalent in the market by replacing window-attention with our sparse focal point modulation. Our SFPNet is capable of extracting multi-level contexts and dynamically aggregating them using a gate mechanism. By implementing a channel-wise information query, features that incorporate both local and global contexts are encoded. We also introduce a novel large-scale hybrid-solid LiDAR semantic segmentation dataset for robotic applications. SFPNet demonstrates competitive performance on conventional benchmarks derived from mechanical spinning LiDAR, while achieving state-of-the-art results on benchmark derived from solid-state LiDAR. Additionally, it outperforms existing methods on our novel dataset sourced from hybrid-solid LiDAR. Code and dataset are available at https://github.com/Cavendish518/SFPNet and https://www.semanticindustry.top.
Related papers
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps [8.897884780881535]
LiDAR-based 3D object detectors often fail to adapt well to target domains with different sensor configurations.
Recent studies suggest that pre-trained backbones can be learned in a self-supervised manner with large-scale unlabeled LiDAR frames.
We propose a novel method, called Domain Adaptive Distill-Tuning (DADT), to adapt a pre-trained model with limited target data.
arXiv Detail & Related papers (2024-10-02T08:22:42Z) - From One to the Power of Many: Invariance to Multi-LiDAR Perception from Single-Sensor Datasets [12.712896458348515]
We introduce a new metric for feature-level invariance which can serve as a proxy to measure cross-domain generalization without requiring labeled data.
We propose two application-specific data augmentations, which facilitate better transfer to multi-sensor setups LiDAR, when trained on single-sensor datasets.
arXiv Detail & Related papers (2024-09-27T09:51:45Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions.
We propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy.
We design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications.
arXiv Detail & Related papers (2023-01-03T06:47:31Z) - LaserMix for Semi-Supervised LiDAR Semantic Segmentation [56.73779694312137]
We study the underexplored semi-supervised learning (SSL) in LiDAR segmentation.
Our core idea is to leverage the strong spatial cues of LiDAR point clouds to better exploit unlabeled data.
We propose LaserMix to mix laser beams from different LiDAR scans, and then encourage the model to make consistent and confident predictions.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Learning Moving-Object Tracking with FMCW LiDAR [53.05551269151209]
We propose a learning-based moving-object tracking method utilizing our newly developed LiDAR sensor, Frequency Modulated Continuous Wave (FMCW) LiDAR.
Given the labels, we propose a contrastive learning framework, which pulls together the features from the same instance in embedding space and pushes apart the features from different instances to improve the tracking quality.
arXiv Detail & Related papers (2022-03-02T09:11:36Z) - Lite-HDSeg: LiDAR Semantic Segmentation Using Lite Harmonic Dense
Convolutions [2.099922236065961]
We present Lite-HDSeg, a novel real-time convolutional neural network for semantic segmentation of full $3$D LiDAR point clouds.
Our experimental results show that the proposed method outperforms state-of-the-art semantic segmentation approaches which can run real-time.
arXiv Detail & Related papers (2021-03-16T04:54:57Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDAR-based panoptic segmentation aims to parse both objects and scenes in a unified manner.
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-24T08:44:46Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.