論文の概要: Enhancing TinyML Security: Study of Adversarial Attack Transferability
- arxiv url: http://arxiv.org/abs/2407.11599v2
- Date: Thu, 18 Jul 2024 05:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 13:41:46.952186
- Title: Enhancing TinyML Security: Study of Adversarial Attack Transferability
- Title(参考訳): TinyMLセキュリティの強化: 敵攻撃伝達性の検討
- Authors: Parin Shah, Yuvaraj Govindarajulu, Pavan Kulkarni, Manojkumar Parmar,
- Abstract要約: この研究は、リソース制約の組込みハードウェア上でAIモデルの敵対的脆弱性を掘り下げるものである。
以上の結果から,強力なホストマシンからの敵攻撃は,ESP32やRaspberry Piなど,より小型で安全性の低いデバイスに転送される可能性が示唆された。
このことは、敵対的攻撃が小さなデバイスに拡張され、脆弱性が強調され、TinyMLデプロイメントにおける強化されたセキュリティ対策の必要性を強調していることを示している。
- 参考スコア(独自算出の注目度): 0.35998666903987897
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent strides in artificial intelligence (AI) and machine learning (ML) have propelled the rise of TinyML, a paradigm enabling AI computations at the edge without dependence on cloud connections. While TinyML offers real-time data analysis and swift responses critical for diverse applications, its devices' intrinsic resource limitations expose them to security risks. This research delves into the adversarial vulnerabilities of AI models on resource-constrained embedded hardware, with a focus on Model Extraction and Evasion Attacks. Our findings reveal that adversarial attacks from powerful host machines could be transferred to smaller, less secure devices like ESP32 and Raspberry Pi. This illustrates that adversarial attacks could be extended to tiny devices, underscoring vulnerabilities, and emphasizing the necessity for reinforced security measures in TinyML deployments. This exploration enhances the comprehension of security challenges in TinyML and offers insights for safeguarding sensitive data and ensuring device dependability in AI-powered edge computing settings.
- Abstract(参考訳): 人工知能(AI)と機械学習(ML)の最近の進歩は、クラウド接続に依存することなく、エッジでのAI計算を可能にするパラダイムであるTinyMLの台頭を促している。
TinyMLは、さまざまなアプリケーションにとって重要なリアルタイムデータ分析と迅速なレスポンスを提供するが、そのデバイス固有のリソース制限は、セキュリティリスクを露呈する。
この研究は、リソースに制限された組み込みハードウェア上のAIモデルの敵対的脆弱性を深く掘り下げ、モデル抽出と侵入攻撃に焦点をあてる。
以上の結果から,強力なホストマシンからの敵攻撃は,ESP32やRaspberry Piなど,より小型で安全性の低いデバイスに転送される可能性が示唆された。
このことは、敵対的攻撃が小さなデバイスに拡張され、脆弱性が強調され、TinyMLデプロイメントにおける強化されたセキュリティ対策の必要性を強調していることを示している。
この調査は、TinyMLのセキュリティ課題の理解を強化し、センシティブなデータを保護し、AIによるエッジコンピューティング設定におけるデバイス依存性を保証するための洞察を提供する。
関連論文リスト
- TinyML Security: Exploring Vulnerabilities in Resource-Constrained Machine Learning Systems [12.33137384257399]
Tiny Machine Learning (TinyML)システムは、リソースに制約のあるデバイス上での機械学習推論を可能にする。
TinyMLモデルはセキュリティ上のリスクを生じさせ、重み付けによって機密性の高いデータやクエリインターフェースをエンコードする可能性がある。
この論文は、TinyMLのセキュリティ脅威に関する最初の徹底的な調査を提供する。
論文 参考訳(メタデータ) (2024-11-11T16:41:22Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
大規模言語モデル(LLM)は、Web検索、ヘルスケア、ソフトウェア開発など、さまざまな領域に大きな影響を与えている。
これらのモデルがスケールするにつれて、サイバーセキュリティのリスク、特にバックドア攻撃に対する脆弱性が高まる。
論文 参考訳(メタデータ) (2024-09-30T06:31:36Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
さまざまな分野にわたるIoT(Internet of Things)デバイスは、深刻なネットワークセキュリティ上の懸念をエスカレートしている。
サイバー攻撃分類のための従来の機械学習(ML)ベースの侵入検知システム(IDS)は、IoTデバイスからトラフィック分析のための集中サーバへのデータ送信を必要とし、深刻なプライバシー上の懸念を引き起こす。
我々はFedMADEという新しい動的アグリゲーション手法を紹介した。この手法はデバイスをトラフィックパターンによってクラスタリングし、その全体的なパフォーマンスに対する貢献に基づいてローカルモデルを集約する。
論文 参考訳(メタデータ) (2024-08-13T18:42:34Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
大規模言語モデル(LLM)は、幅広いタスクで素晴らしいパフォーマンスを示している。
特にLSMは敵攻撃に弱いことが知られており、入力に対する非受容的な変更はモデルの出力を誤解させる可能性がある。
本稿では,メカニスティック・インタプリタビリティ(MI)技術に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T09:55:34Z) - On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure Use Case [17.1066653907873]
本稿では、消費電力、メモリ制限、計算制約などのTinyML技術の課題について述べる。
また、エネルギー収穫、計算最適化技術、プライバシー保護のための伝達学習など、これらの課題に対する潜在的な解決策についても検討している。
TinyMLを用いたEVCIのサイバーセキュリティを高める実験ケーススタディを,遅延とメモリ使用量の削減の観点から,従来のMLに対して評価した。
論文 参考訳(メタデータ) (2024-04-25T01:57:11Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
Open Radio Access Network (O-RAN) は、新しい、オープンで適応的でインテリジェントなRANアーキテクチャである。
本稿では,O-RANに対する体系的対向機械学習脅威分析を提案する。
論文 参考訳(メタデータ) (2022-01-16T17:01:38Z) - Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [24.60052335548398]
機械学習(ML)技術は、スマートサイバーフィジカルシステム(CPS)とIoT(Internet-of-Things)によって急速に採用されています。
ハードウェアとソフトウェアの両方のレベルで、さまざまなセキュリティと信頼性の脅威に脆弱であり、その正確性を損ないます。
本稿では、現代のMLシステムの顕著な脆弱性を要約し、これらの脆弱性に対する防御と緩和技術の成功を強調する。
論文 参考訳(メタデータ) (2021-01-04T20:06:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。