論文の概要: On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure Use Case
- arxiv url: http://arxiv.org/abs/2404.16894v3
- Date: Fri, 26 Jul 2024 16:25:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 17:52:18.210622
- Title: On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure Use Case
- Title(参考訳): TinyMLとサイバーセキュリティ:電気自動車充電インフラのユースケース
- Authors: Fatemeh Dehrouyeh, Li Yang, Firouz Badrkhani Ajaei, Abdallah Shami,
- Abstract要約: 本稿では、消費電力、メモリ制限、計算制約などのTinyML技術の課題について述べる。
また、エネルギー収穫、計算最適化技術、プライバシー保護のための伝達学習など、これらの課題に対する潜在的な解決策についても検討している。
TinyMLを用いたEVCIのサイバーセキュリティを高める実験ケーススタディを,遅延とメモリ使用量の削減の観点から,従来のMLに対して評価した。
- 参考スコア(独自算出の注目度): 17.1066653907873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As technology advances, the use of Machine Learning (ML) in cybersecurity is becoming increasingly crucial to tackle the growing complexity of cyber threats. While traditional ML models can enhance cybersecurity, their high energy and resource demands limit their applications, leading to the emergence of Tiny Machine Learning (TinyML) as a more suitable solution for resource-constrained environments. TinyML is widely applied in areas such as smart homes, healthcare, and industrial automation. TinyML focuses on optimizing ML algorithms for small, low-power devices, enabling intelligent data processing directly on edge devices. This paper provides a comprehensive review of common challenges of TinyML techniques, such as power consumption, limited memory, and computational constraints; it also explores potential solutions to these challenges, such as energy harvesting, computational optimization techniques, and transfer learning for privacy preservation. On the other hand, this paper discusses TinyML's applications in advancing cybersecurity for Electric Vehicle Charging Infrastructures (EVCIs) as a representative use case. It presents an experimental case study that enhances cybersecurity in EVCI using TinyML, evaluated against traditional ML in terms of reduced delay and memory usage, with a slight trade-off in accuracy. Additionally, the study includes a practical setup using the ESP32 microcontroller in the PlatformIO environment, which provides a hands-on assessment of TinyML's application in cybersecurity for EVCI.
- Abstract(参考訳): 技術が進歩するにつれて、サイバーセキュリティにおける機械学習(ML)の使用は、サイバー脅威の複雑化に対処するためにますます重要になりつつある。
従来のMLモデルはサイバーセキュリティを強化することができるが、その高エネルギーとリソース要求はアプリケーションを制限するため、リソース制約のある環境においてより適切なソリューションとしてTiny Machine Learning(TinyML)が出現する。
TinyMLは、スマートホーム、ヘルスケア、産業自動化といった分野で広く採用されている。
TinyMLは、小さな低消費電力デバイス向けのMLアルゴリズムの最適化に重点を置いており、エッジデバイス上でのインテリジェントなデータ処理を可能にする。
本稿では,電力消費,メモリ制限,計算制約などのTinyMLテクニックの共通課題を包括的にレビューし,エネルギー収穫,計算最適化技術,プライバシー保護のための伝達学習など,これらの課題に対する潜在的な解決策について検討する。
一方,電気自動車充電インフラ(EVCI)のサイバーセキュリティ推進におけるTinyMLの応用を代表的ユースケースとして論じる。
TinyMLを用いたEVCIのサイバーセキュリティを強化する実験ケーススタディとして,遅延とメモリ使用量の削減の観点から従来のMLと比較し,精度のトレードオフがわずかである。
さらに、この研究には、PlatformIO環境でESP32マイクロコントローラを使用して実践的なセットアップが含まれており、EVCIのサイバーセキュリティにおけるTinyMLの応用をハンズオンで評価する。
関連論文リスト
- TinyML Security: Exploring Vulnerabilities in Resource-Constrained Machine Learning Systems [12.33137384257399]
Tiny Machine Learning (TinyML)システムは、リソースに制約のあるデバイス上での機械学習推論を可能にする。
TinyMLモデルはセキュリティ上のリスクを生じさせ、重み付けによって機密性の高いデータやクエリインターフェースをエンコードする可能性がある。
この論文は、TinyMLのセキュリティ脅威に関する最初の徹底的な調査を提供する。
論文 参考訳(メタデータ) (2024-11-11T16:41:22Z) - TinyML NLP Approach for Semantic Wireless Sentiment Classification [49.801175302937246]
本稿では,エネルギー効率のよいプライバシ保護型小型機械学習(MLTiny)方式としてスプリットラーニング(SL)を導入する。
その結果,SLは高い精度を維持しながら処理能力とCO2排出量を低減し,FLは効率とプライバシのバランスのとれた妥協を提供することがわかった。
論文 参考訳(メタデータ) (2024-11-09T21:26:59Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - Enhancing TinyML Security: Study of Adversarial Attack Transferability [0.35998666903987897]
この研究は、リソース制約の組込みハードウェア上でAIモデルの敵対的脆弱性を掘り下げるものである。
以上の結果から,強力なホストマシンからの敵攻撃は,ESP32やRaspberry Piなど,より小型で安全性の低いデバイスに転送される可能性が示唆された。
このことは、敵対的攻撃が小さなデバイスに拡張され、脆弱性が強調され、TinyMLデプロイメントにおける強化されたセキュリティ対策の必要性を強調していることを示している。
論文 参考訳(メタデータ) (2024-07-16T10:55:25Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Efficient Neural Networks for Tiny Machine Learning: A Comprehensive
Review [1.049712834719005]
このレビューでは、効率的なニューラルネットワークの進歩と超低消費電力マイクロコントローラへのディープラーニングモデルの展開を詳細に分析する。
レビューの中核は、TinyMLの効率的なニューラルネットワークに焦点を当てている。
モデル圧縮、量子化、低ランク因数分解などのテクニックをカバーし、最小限のリソース利用のためにニューラルネットワークアーキテクチャを最適化する。
次に,超低消費電力MCU上でのディープラーニングモデルの展開について検討し,限られた計算能力やメモリ資源といった課題に対処する。
論文 参考訳(メタデータ) (2023-11-20T16:20:13Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyMLは、安価でリソースに制約のあるデバイス上でのMLアプリケーションを可能にする、組み込み機械学習技術である。
この記事では、TinyML実装で利用可能なさまざまな方法についてレビューする。
論文 参考訳(メタデータ) (2023-03-23T15:29:48Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。