Walking through Hilbert Space with Quantum Computers
- URL: http://arxiv.org/abs/2407.11672v1
- Date: Tue, 16 Jul 2024 12:43:44 GMT
- Title: Walking through Hilbert Space with Quantum Computers
- Authors: Tong Jiang, Jinghong Zhang, Moritz K. A. Baumgarten, Meng-Fu Chen, Hieu Q. Dinh, Aadithya Ganeshram, Nishad Maskara, Anton Ni, Joonho Lee,
- Abstract summary: This review highlights the recent advancements of quantum algorithms tackling complex sampling tasks in the key areas of computational chemistry.
We review a broad range of quantum algorithms, from hybrid quantum-classical to fully quantum.
We discuss the potentials and challenges in achieving quantum computational advantages.
- Score: 1.501073837060726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computations of chemical systems' equilibrium properties and non-equilibrium dynamics have been suspected of being a "killer app" for quantum computers. This review highlights the recent advancements of quantum algorithms tackling complex sampling tasks in the key areas of computational chemistry: ground state, thermal state properties, and quantum dynamics calculations. We review a broad range of quantum algorithms, from hybrid quantum-classical to fully quantum, focusing on the traditional Monte Carlo family, including Markov chain Monte Carlo, variational Monte Carlo, projector Monte Carlo, path integral Monte Carlo, etc. We also cover other relevant techniques involving complex sampling tasks, such as quantum-selected configuration interaction, minimally entangled typical thermal states, entanglement forging, and Monte Carlo-flavored Lindbladian dynamics. We provide a comprehensive overview of these algorithms' classical and quantum counterparts, detailing their theoretical frameworks and discussing the potentials and challenges in achieving quantum computational advantages.
Related papers
- Quantum Dynamical Hamiltonian Monte Carlo [0.0]
A ubiquitous problem in machine learning is sampling from probability distributions that we only have access to via their log probability.
We extend the well-known Hamiltonian Monte Carlo (HMC) method for Chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner.
arXiv Detail & Related papers (2024-03-04T07:08:23Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum computing for chemistry and physics applications from a Monte
Carlo perspective [0.0]
This Perspective focuses on the several overlaps between quantum algorithms and Monte Carlo methods in the domains of physics and chemistry.
We will analyze the challenges and possibilities of integrating established quantum Monte Carlo solutions in quantum algorithms.
arXiv Detail & Related papers (2023-08-15T18:01:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Survey of Quantum Alternatives to Randomized Algorithms: Monte Carlo
Integration and Beyond [7.060988518771793]
We focus on the potential to obtain a quantum advantage in the computational speed of Monte Carlo procedures using quantum circuits.
We revisit the quantum algorithms that could replace classical Monte Carlo and then consider both the existing quantum algorithms and the potential quantum realizations.
arXiv Detail & Related papers (2023-03-08T23:39:49Z) - Quantum-assisted Monte Carlo algorithms for fermions [5.625946422295428]
We propose a family of scalable quantum-assisted Monte Carlo algorithms where the quantum computer is used at its minimal cost.
We show that the hybrid Monte Carlo framework is a general way to suppress errors in the ground state obtained from classical algorithms.
arXiv Detail & Related papers (2022-05-30T07:49:22Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Accelerated quantum Monte Carlo with mitigated error on noisy quantum
computer [4.762232147934851]
We introduce a novel non-variational algorithm using quantum simulation as a subroutine to accelerate quantum Monte Carlo.
The proposed quantum algorithm is applicable to near-term noisy quantum hardware.
arXiv Detail & Related papers (2021-06-18T02:45:14Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.