論文の概要: Targeted Unlearning with Single Layer Unlearning Gradient
- arxiv url: http://arxiv.org/abs/2407.11867v3
- Date: Thu, 29 May 2025 18:24:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.429802
- Title: Targeted Unlearning with Single Layer Unlearning Gradient
- Title(参考訳): 単層アンラーニング勾配によるターゲット型アンラーニング
- Authors: Zikui Cai, Yaoteng Tan, M. Salman Asif,
- Abstract要約: 機械学習手法は、訓練されたモデルからセンシティブまたは望ましくないコンテンツを除去することを目的としている。
対象情報を学習するための効率的な手法として,SLUG(Single Layer Unlearning Gradient Computing)を提案する。
- 参考スコア(独自算出の注目度): 15.374381635334897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning methods aim to remove sensitive or unwanted content from trained models, but typically demand extensive model updates at significant computational cost while potentially degrading model performance on both related and unrelated tasks. We propose Single Layer Unlearning Gradient (SLUG) as an efficient method to unlearn targeted information by updating a single critical layer using a one-time gradient computation. SLUG uses layer importance and gradient alignment metrics to identify the optimal layer for targeted information removal while preserving the model utility. We demonstrate the effectiveness of SLUG for CLIP, Stable Diffusion, and vision-language models (VLMs) in removing concrete (e.g., identities and objects) and abstract concepts (e.g., artistic styles). On the UnlearnCanvas benchmark, SLUG achieves comparable unlearning performance to existing methods while requiring significantly less computational resources. Our proposed approach offers a practical solution for targeted unlearning that is computationally efficient and precise. Our code is available at https://github.com/CSIPlab/SLUG.
- Abstract(参考訳): 機械学習手法は、訓練されたモデルからセンシティブなコンテンツや不要なコンテンツを取り除くことを目的としているが、典型的には、計算コストの大幅な削減と、関連するタスクと無関係なタスクの両方でモデルパフォーマンスを低下させる可能性がある。
本研究では,単一臨界層を1時間勾配計算を用いて更新することにより,対象情報を効率的に解き放つ方法としてSLUGを提案する。
SLUGは、モデルユーティリティを保持しながら、ターゲット情報を削除するための最適なレイヤを特定するために、レイヤの重要度と勾配アライメントのメトリクスを使用する。
本稿では,CLIP,安定拡散,視覚言語モデル(VLM)に対するSLUGの有効性を示す。
UnlearnCanvasベンチマークでは、SLUGは既存のメソッドに匹敵する非学習性能を達成し、計算リソースを著しく削減する。
提案手法は, 計算効率が良く, 正確である対象未学習に対して, 実用的な解を提供する。
私たちのコードはhttps://github.com/CSIPlab/SLUG.comで公開されています。
関連論文リスト
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
本稿では,生成型AIツールの利用の増加に伴って生じる複雑な情報ダイナミクスについて,新たな定量的アプローチを提案する。
本稿では,新たなトピックに応答して情報の生成,索引付け,普及を特徴付けるモデルを提案する。
以上の結果から,AI導入の急激なペースとユーザ依存度の増加は,不正確な情報拡散のリスクを増大させる可能性が示唆された。
論文 参考訳(メタデータ) (2025-04-29T10:21:40Z) - Privacy Preservation in Gen AI Applications [0.0]
LLM(Large Language Models)は、意図せずユーザインタラクションからPII(Personally Identible Information)を吸収し、明らかにする。
ディープニューラルネットワークの複雑さは、プライベート情報の意図しない保存とリリースの追跡や停止を困難にしている。
本研究では,データ抽出やモデルインバージョン,メンバシップ推論といった攻撃を通じて生成AIの弱点を検出することで,これらの問題に対処する。
LLMを扱う前にPIIを識別、変更、削除する手法を使用することで、機能を犠牲にすることなくプライバシを確保する。
論文 参考訳(メタデータ) (2025-04-12T06:19:37Z) - Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning [0.03749861135832072]
本稿では、従来のデータ消去手法と対比して、AIシステム内でのRTBF(Right to be Forgotten)の概念について考察する。
Forgotten by Designは,インスタンス固有の難読化技術を統合した,プライバシ保護のための積極的なアプローチである。
CIFAR-10データセットを用いた実験では,モデル精度を維持しながら,少なくとも1桁のプライバシーリスクを低減できることが示されている。
論文 参考訳(メタデータ) (2025-01-20T15:07:59Z) - Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice [186.055899073629]
非学習はしばしば、生成AIモデルからターゲット情報の影響を取り除くソリューションとして呼び出される。
未学習はまた、モデルが出力中にターゲットとなるタイプの情報を生成するのを防ぐ方法として提案されている。
これら2つの目標 - モデルからの情報の標的的除去と、モデル出力からの情報のターゲット的抑制 - は、様々な技術的および現実的な課題を表す。
論文 参考訳(メタデータ) (2024-12-09T20:18:43Z) - Game-Theoretic Machine Unlearning: Mitigating Extra Privacy Leakage [12.737028324709609]
最近の法律では、要求されたデータとその影響を訓練されたモデルから取り除くことが義務付けられている。
本研究では,非学習性能とプライバシ保護の競合関係をシミュレートするゲーム理論マシンアンラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-06T13:47:04Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Generative Models are Self-Watermarked: Declaring Model Authentication
through Re-Generation [17.88043926057354]
データオーナシップの検証は、特に生成したデータの不正な再利用の場合、非常に困難な問題を引き起こします。
私たちの研究は、個々のサンプルからでもデータの再利用を検出することに集中しています。
本稿では, 再生成によるデータ所有を考慮に入れた説明可能な検証手法を提案し, さらに, 反復的データ再生による生成モデルにおけるこれらの指紋の増幅を行う。
論文 参考訳(メタデータ) (2024-02-23T10:48:21Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - Your Room is not Private: Gradient Inversion Attack on Reinforcement
Learning [47.96266341738642]
プライバシーは、ロボットが実質的な個人情報にアクセスすることによって、具体化されたAIの領域における重要な関心事として浮上する。
本稿では, 状態, 行動, 監視信号の再構成に勾配インバージョンを利用する, 値ベースアルゴリズムと勾配ベースアルゴリズムに対する攻撃を提案する。
論文 参考訳(メタデータ) (2023-06-15T16:53:26Z) - A Survey of Machine Unlearning [56.017968863854186]
最近の規制では、要求に応じて、ユーザに関する個人情報をコンピュータシステムから削除する必要がある。
MLモデルは古いデータをよく記憶します。
機械学習に関する最近の研究は、この問題を完全に解決することはできなかった。
論文 参考訳(メタデータ) (2022-09-06T08:51:53Z) - Disentangling private classes through regularization [8.72305226979945]
深層学習モデルのためのアプローチであるDisPを提案する。
DisPは、トレーニング時に同一のプライベートクラスに属する機能を非相関化し、プライベートクラスのメンバーシップの情報を隠蔽する正規化戦略である。
最先端のディープラーニングモデルを用いた実験により,DisPの有効性が示された。
論文 参考訳(メタデータ) (2022-07-05T12:35:47Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。