論文の概要: Specific language impairment (SLI) detection pipeline from transcriptions of spontaneous narratives
- arxiv url: http://arxiv.org/abs/2407.12012v1
- Date: Tue, 25 Jun 2024 19:22:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:30:12.133055
- Title: Specific language impairment (SLI) detection pipeline from transcriptions of spontaneous narratives
- Title(参考訳): 自然発生物語の転写から特定言語障害(SLI)検出パイプライン
- Authors: Santiago Arena, Antonio Quintero-Rincón,
- Abstract要約: 特定の言語障害(SLI)はコミュニケーションに影響を及ぼし、理解と表現の両方に影響を及ぼす疾患である。
本研究は,1063回のインタビューから得られた自発物語の書き起こしを用いて,子どものSLIを効果的に検出することに焦点を当てた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Specific Language Impairment (SLI) is a disorder that affects communication and can affect both comprehension and expression. This study focuses on effectively detecting SLI in children using transcripts of spontaneous narratives from 1063 interviews. A three-stage cascading pipeline was proposed f. In the first stage, feature extraction and dimensionality reduction of the data are performed using the Random Forest (RF) and Spearman correlation methods. In the second stage, the most predictive variables from the first stage are estimated using logistic regression, which is used in the last stage to detect SLI in children from transcripts of spontaneous narratives using a nearest neighbor classifier. The results revealed an accuracy of 97.13% in identifying SLI, highlighting aspects such as the length of the responses, the quality of their utterances, and the complexity of the language. This new approach, framed in natural language processing, offers significant benefits to the field of SLI detection by avoiding complex subjective variables and focusing on quantitative metrics directly related to the child's performance.
- Abstract(参考訳): 特定の言語障害(SLI)はコミュニケーションに影響を及ぼし、理解と表現の両方に影響を及ぼす疾患である。
本研究は,1063回のインタビューから得られた自発物語の書き起こしを用いて,子どものSLIを効果的に検出することに焦点を当てた。
3段階のカスケードパイプラインが提案された。
第1段階では、ランダムフォレスト(RF)とスピアマン相関法を用いて特徴抽出とデータ次元の縮小を行う。
第2段階では、第1段階から最も予測可能な変数をロジスティック回帰を用いて推定し、最終段階において、近隣の分類器を用いて自然発生物語の書き起こしから子どものSLIを検出する。
その結果、SLIの同定において97.13%の精度が示され、応答の長さ、発話の質、言語の複雑さといった側面が強調された。
自然言語処理を基盤としたこの新しいアプローチは、複雑な主観的変数を回避し、子どものパフォーマンスに直接関連する定量的指標に焦点を当てることで、SLI検出の分野に大きなメリットをもたらす。
関連論文リスト
- The Empirical Impact of Data Sanitization on Language Models [1.1359551336076306]
本稿では,複数のベンチマーク言語モデリングタスクにおけるデータ・サニタイズの効果を実証的に分析する。
以上の結果から,感情分析やエンテーメントなどのタスクでは,リアクションの影響は極めて低く,典型的には1~5%程度であることが示唆された。
理解的なQ&Aのようなタスクでは、オリジナルのものと比較して、再実行クエリで観測されるパフォーマンスの25%が大幅に低下している。
論文 参考訳(メタデータ) (2024-11-08T21:22:37Z) - MALTO at SemEval-2024 Task 6: Leveraging Synthetic Data for LLM
Hallucination Detection [3.049887057143419]
自然言語生成(NLG)では、現代のLarge Language Models(LLM)がいくつかの課題に直面している。
これはしばしば「幻覚」を示すニューラルネットワークにつながる
SHROOMチャレンジは、生成されたテキストでこれらの幻覚を自動的に識別することに焦点を当てている。
論文 参考訳(メタデータ) (2024-03-01T20:31:10Z) - Syntactic Language Change in English and German: Metrics, Parsers, and Convergences [56.47832275431858]
本論文は,過去160年間の議会討論のコーパスを用いて,英語とドイツ語の統語的言語変化のダイアクロニックな傾向を考察する。
私たちは、広く使われているStanford Coreと、新しい4つの選択肢を含む5つの依存関係をベースとしています。
文長分布の尾部では,構文的尺度の変化が頻繁であることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-18T11:46:16Z) - Comparing Hallucination Detection Metrics for Multilingual Generation [62.97224994631494]
本稿では,各言語にまたがって生成した伝記要約における幻覚を,様々な事実の幻覚検出指標がいかによく識別するかを評価する。
自動測度が相互にどのように相関するか, 事実判断に一致しているかを比較検討した。
我々の分析によると、語彙指標は非効率であるが、NLIベースのメトリクスはよく機能し、多くの設定における人間のアノテーションと相関し、しばしば教師付きモデルよりも優れている。
論文 参考訳(メタデータ) (2024-02-16T08:10:34Z) - Prosody in Cascade and Direct Speech-to-Text Translation: a case study
on Korean Wh-Phrases [79.07111754406841]
本研究は,韻律が重要な役割を果たす発話を明瞭にするための直接S2TTシステムの能力を評価するために,コントラスト評価を用いることを提案する。
本結果は,カスケード翻訳モデルよりも直接翻訳システムの価値を明確に示すものである。
論文 参考訳(メタデータ) (2024-02-01T14:46:35Z) - Towards Lifelong Learning of Multilingual Text-To-Speech Synthesis [87.75833205560406]
本研究は,多言語テキスト音声(TTS)システムを学習するための生涯学習手法を提案する。
すべての言語からプールされたデータを必要としないため、ストレージと計算の負担が軽減される。
論文 参考訳(メタデータ) (2021-10-09T07:00:38Z) - Is Supervised Syntactic Parsing Beneficial for Language Understanding?
An Empirical Investigation [71.70562795158625]
従来のNLPは、高レベルセマンティック言語理解(LU)の成功に必要な構文解析を長い間保持(教師付き)してきた。
近年のエンドツーエンドニューラルネットワークの出現、言語モデリング(LM)による自己監視、および幅広いLUタスクにおける成功は、この信念に疑問を投げかけている。
本研究では,LM-Pretrained Transformer Network の文脈における意味的LUに対する教師あり構文解析の有用性を実証的に検討する。
論文 参考訳(メタデータ) (2020-08-15T21:03:36Z) - Towards Relevance and Sequence Modeling in Language Recognition [39.547398348702025]
本稿では,言語認識における短系列情報を利用したニューラルネットワークフレームワークを提案する。
音声認識タスクの関連性に基づいて、音声データの一部を重み付けする言語認識に関連性を取り入れた新しいモデルを提案する。
NIST LRE 2017 Challengeにおいて、クリーン、ノイズ、マルチ話者音声データを用いて言語認識タスクを用いて実験を行う。
論文 参考訳(メタデータ) (2020-04-02T18:31:18Z) - Identification of primary and collateral tracks in stuttered speech [22.921077940732]
臨床およびNLPパースペクティブに着想を得て, 拡散検出のための新しい評価フレームワークを提案する。
本稿では, 半方向性インタビューのコーパスから, 強制整列型ディスフルエンシデータセットを提案する。
単語ベースのスパン特徴を用いることで,音声による予測のベースラインよりも優れることを示す。
論文 参考訳(メタデータ) (2020-03-02T16:50:33Z) - The Secret is in the Spectra: Predicting Cross-lingual Task Performance
with Spectral Similarity Measures [83.53361353172261]
本稿では,モノリンガル埋め込み空間の類似性とタスク性能の相関性に着目した大規模研究を行う。
2つの埋め込み空間間のいくつかの同型測度を導入し、それぞれのスペクトルの関連統計に基づく。
このようなスペクトル同型尺度から得られた言語類似度スコアは、異なる言語間タスクで観測された性能と強く関連していることを実証的に示す。
論文 参考訳(メタデータ) (2020-01-30T00:09:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。