論文の概要: Dy-mer: An Explainable DNA Sequence Representation Scheme using Sparse Recovery
- arxiv url: http://arxiv.org/abs/2407.12051v1
- Date: Sat, 6 Jul 2024 15:08:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:20:27.654241
- Title: Dy-mer: An Explainable DNA Sequence Representation Scheme using Sparse Recovery
- Title(参考訳): Dy-mer:スパースリカバリを用いた説明可能なDNA配列表現方式
- Authors: Zhiyuan Peng, Yuanbo Tang, Yang Li,
- Abstract要約: textbfDy-merはスパースリカバリに基づく説明可能で堅牢な表現スキームである。
DNAプロモーターの分類における最先端のパフォーマンスを達成し、textbf13%の精度向上をもたらす。
- 参考スコア(独自算出の注目度): 6.733319363951907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DNA sequences encode vital genetic and biological information, yet these unfixed-length sequences cannot serve as the input of common data mining algorithms. Hence, various representation schemes have been developed to transform DNA sequences into fixed-length numerical representations. However, these schemes face difficulties in learning high-quality representations due to the complexity and sparsity of DNA data. Additionally, DNA sequences are inherently noisy because of mutations. While several schemes have been proposed for their effectiveness, they often lack semantic structure, making it difficult for biologists to validate and leverage the results. To address these challenges, we propose \textbf{Dy-mer}, an explainable and robust DNA representation scheme based on sparse recovery. Leveraging the underlying semantic structure of DNA, we modify the traditional sparse recovery to capture recurring patterns indicative of biological functions by representing frequent K-mers as basis vectors and reconstructing each DNA sequence through simple concatenation. Experimental results demonstrate that \textbf{Dy-mer} achieves state-of-the-art performance in DNA promoter classification, yielding a remarkable \textbf{13\%} increase in accuracy. Moreover, its inherent explainability facilitates DNA clustering and motif detection, enhancing its utility in biological research.
- Abstract(参考訳): DNA配列は重要な遺伝情報や生物学的情報をコードするが、これらの未固定長配列は一般的なデータマイニングアルゴリズムの入力として機能しない。
そのため、DNA配列を固定長の数値表現に変換するための様々な表現スキームが開発されている。
しかし、これらのスキームは、DNAデータの複雑さと空間性のために、高品質な表現を学ぶのに困難に直面している。
さらに、DNA配列は突然変異のため本質的にうるさい。
有効性のためにいくつかのスキームが提案されているが、しばしば意味的構造が欠如しており、生物学者が結果の検証と活用を困難にしている。
これらの課題に対処するために、スパースリカバリに基づく説明可能で堅牢なDNA表現スキームである \textbf{Dy-mer} を提案する。
基礎となるDNAのセマンティック構造を活用することで, 生物機能を示す繰り返しパターンを, K-merを基本ベクターとして表現し, 簡単な結合によって各DNA配列を再構築することで, 従来のスパース修復を改良する。
実験の結果, <textbf{Dy-mer} はDNAプロモーターの分類における最先端性能を達成し, 精度が著しく向上した。
さらに、その固有の説明可能性によってDNAのクラスタリングとモチーフの検出が促進され、生物学的研究におけるその有用性が向上する。
関連論文リスト
- A Benchmark Dataset for Multimodal Prediction of Enzymatic Function Coupling DNA Sequences and Natural Language [3.384797724820242]
DNA配列から遺伝子機能を予測することは、生物学における根本的な課題である。
深層学習モデルは、DNA配列を埋め込み、その酵素機能を予測するために提案されている。
科学界の生物学的機能に関する知識の多くは分類学的なラベルで表されていない。
論文 参考訳(メタデータ) (2024-07-21T19:27:43Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
textscLanguage prefix ftextscIne-tuning for textscGentextscOmes。
DNA基盤モデルとは異なり、textscLingoは自然言語基盤モデルの文脈的手がかりを戦略的に活用している。
textscLingoはさらに、適応的なランクサンプリング方法により、下流の細調整タスクを数多く許容する。
論文 参考訳(メタデータ) (2024-02-12T21:40:45Z) - BEND: Benchmarking DNA Language Models on biologically meaningful tasks [7.005668635562045]
DNA言語モデルのベンチマークであるBENDを紹介し、現実的で生物学的に意味のある下流タスクのコレクションを特徴とする。
現在のDNA LMからの埋め込みは、一部のタスクにおいて専門家メソッドのパフォーマンスにアプローチできるが、長距離機能に関する限られた情報しか取得できない。
論文 参考訳(メタデータ) (2023-11-21T12:34:00Z) - Embed-Search-Align: DNA Sequence Alignment using Transformer Models [2.48439258515764]
我々はTransformerモデルのシーケンスアライメントタスクを"Embed-Search-Align"タスクとしてフレーミングすることでギャップを埋める。
新規なレファレンスフリーDNA埋め込みモデルは、共有ベクトル空間に投影される読み取りおよび参照フラグメントの埋め込みを生成する。
DNA-ESAは、BowtieやBWA-Memといった従来の手法に匹敵する、ヒトゲノム(3gb)に250長の読み書きを合わせると99%正確である。
論文 参考訳(メタデータ) (2023-09-20T06:30:39Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPTは、全哺乳類から200億以上の塩基対をトレーニングした、一般的なDNA事前学習モデルである。
古典的なGPTモデルをバイナリ分類タスク、数値回帰タスク、包括的トークン言語で拡張することにより、DNAGPTは汎用的なDNA解析タスクを処理できる。
論文 参考訳(メタデータ) (2023-07-11T06:30:43Z) - HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution [76.97231739317259]
本稿では,ヒト参照ゲノム上に,最大100万個のトークンを単一ヌクレオチドレベルで有するゲノム基盤モデルであるHyenaDNAについて紹介する。
Nucleotide Transformerの微調整されたベンチマークでは、HyenaDNAが18のデータセットのうち12の最先端(SotA)に到達した。
論文 参考訳(メタデータ) (2023-06-27T20:46:34Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
短い一本鎖RNAとDNA配列(アプタマー)の逆設計は、一連の望ましい基準を満たす配列を見つけるタスクである。
我々は、Pottsモデルとして知られる教師なし機械学習モデルを用いて、制御可能なシーケンスの多様性を持つ新しい有用なシーケンスを発見することを提案する。
論文 参考訳(メタデータ) (2022-08-10T13:30:58Z) - Graph Neural Networks for Microbial Genome Recovery [64.91162205624848]
本稿では,グラフニューラルネットワーク(GNN)を用いて,メダゲノミクスビニングのためのコンティグ表現を学習する際のアセンブリグラフを活用することを提案する。
提案手法であるVaeG-Binは,個々のコンティグの潜在表現を学習するための変分オートエンコーダと,アセンブリグラフ内のコンティグの近傍構造を考慮したGNNを組み合わせる。
論文 参考訳(メタデータ) (2022-04-26T12:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。