論文の概要: Across-subject ensemble-learning alleviates the need for large samples for fMRI decoding
- arxiv url: http://arxiv.org/abs/2407.12056v1
- Date: Tue, 9 Jul 2024 08:22:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 09:07:34.050412
- Title: Across-subject ensemble-learning alleviates the need for large samples for fMRI decoding
- Title(参考訳): クロスオブジェクトアンサンブル学習は、fMRI復号のための大規模なサンプルの必要性を緩和する
- Authors: Himanshu Aggarwal, Liza Al-Shikhley, Bertrand Thirion,
- Abstract要約: オブジェクト内デコーディングはオブジェクト間の対応の問題を回避するが、正確な予測を行うにはサンプルサイズが大きい。
本稿では、他の被験者のデータに基づいて訓練された分類器を組み合わせて、新しい被験者の認知状態を復号化するためのアンサンブルアプローチについて検討する。
特にオブジェクトごとのデータに制限のあるデータセットでは,従来の復号法よりも最大20%の精度で性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 37.41192511246204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding cognitive states from functional magnetic resonance imaging is central to understanding the functional organization of the brain. Within-subject decoding avoids between-subject correspondence problems but requires large sample sizes to make accurate predictions; obtaining such large sample sizes is both challenging and expensive. Here, we investigate an ensemble approach to decoding that combines the classifiers trained on data from other subjects to decode cognitive states in a new subject. We compare it with the conventional decoding approach on five different datasets and cognitive tasks. We find that it outperforms the conventional approach by up to 20% in accuracy, especially for datasets with limited per-subject data. The ensemble approach is particularly advantageous when the classifier is trained in voxel space. Furthermore, a Multi-layer Perceptron turns out to be a good default choice as an ensemble method. These results show that the pre-training strategy reduces the need for large per-subject data.
- Abstract(参考訳): 機能的磁気共鳴画像からの認知状態の復号は、脳の機能的構造を理解するために重要である。
オブジェクト内のデコーディングは、オブジェクト間の対応の問題を回避するが、正確な予測を行うには大きなサンプルサイズを必要とする。
本稿では、他の被験者のデータに基づいて訓練された分類器を組み合わせて、新しい被験者の認知状態を復号化するためのアンサンブルアプローチについて検討する。
従来の5つのデータセットと認知タスクのデコード手法と比較した。
特にオブジェクトごとのデータに制限のあるデータセットでは,従来の手法よりも最大20%精度が高いことが判明した。
アンサンブルアプローチは、分類器がボクセル空間で訓練されるときに特に有利である。
さらに、マルチレイヤパーセプトロンはアンサンブルメソッドとして良いデフォルト選択であることが判明した。
これらの結果から,事前学習戦略により,オブジェクトごとの大きなデータの必要性が軽減されることがわかった。
関連論文リスト
- Cross-Subject Data Splitting for Brain-to-Text Decoding [36.30024741795527]
各種認知データセット(fMRI,EEG)における脳からテキストへのデコーディングのためのオブジェクト間データ分割基準を提案する。
既存のクロスオブジェクトデータ分割戦略を包括的に分析し、これらの手法がデータ漏洩に悩まされていることを証明する。
提案するクロスオブジェクト分割法は,データ漏洩問題に対処し,さらなる研究のベースラインとして,いくつかのSOTA脳-テキストデコーディングモデルを再評価する。
論文 参考訳(メタデータ) (2023-12-18T07:22:39Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Aligning brain functions boosts the decoding of visual semantics in
novel subjects [3.226564454654026]
脳の反応をビデオや静止画像に合わせることで脳の復号化を促進することを提案する。
提案手法はオブジェクト外デコード性能を最大75%向上させる。
また、テスト対象者に対して100分未満のデータが得られる場合、古典的な単一オブジェクトアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T15:55:20Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
RGM(Robust Generalist Matching)と呼ばれる疎密マッチングのための深部モデルを提案する。
合成トレーニングサンプルと実世界のシナリオのギャップを狭めるために、我々は、疎対応基盤真理を持つ新しい大規模データセットを構築した。
さまざまな密集したスパースなデータセットを混ぜ合わせることができ、トレーニングの多様性を大幅に改善しています。
論文 参考訳(メタデータ) (2023-10-18T07:30:08Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Constrained Deep One-Class Feature Learning For Classifying Imbalanced
Medical Images [4.211466076086617]
データの不均衡問題に対処するために、一級分類が注目を集めている。
本稿では,コンパクトな特徴を学習するための新しい深層学習手法を提案する。
提案手法は,各クラスに関連するより関連性の高い特徴を学習し,多数派と少数派のサンプルを識別しやすくする。
論文 参考訳(メタデータ) (2021-11-20T15:25:24Z) - Generalized One-Class Learning Using Pairs of Complementary Classifiers [41.64645294104883]
1クラス学習は、単一のクラスでのみアノテーションが利用できるデータにモデルを適合させる古典的な問題である。
本稿では,一級学習の新たな目的を探求し,これを一般化一級識別サブスペース(GODS)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-24T18:52:05Z) - Active Importance Sampling for Variational Objectives Dominated by Rare
Events: Consequences for Optimization and Generalization [12.617078020344618]
本稿では,レアイベントサンプリング手法とニューラルネットワーク最適化を組み合わせて,レアイベントに支配される目的関数を最適化する手法を提案する。
重要度サンプリングは学習問題に対する解の分散を減少させ,一般化の利点を示唆することを示す。
数値実験により,高次元データと希少データの複合化が困難である場合でも,学習を成功させることができた。
論文 参考訳(メタデータ) (2020-08-11T23:38:09Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。