論文の概要: Individualized Federated Learning for Traffic Prediction with Error Driven Aggregation
- arxiv url: http://arxiv.org/abs/2407.12226v1
- Date: Wed, 17 Jul 2024 00:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 18:58:45.392865
- Title: Individualized Federated Learning for Traffic Prediction with Error Driven Aggregation
- Title(参考訳): 誤り駆動アグリゲーションによる交通予測のための個別化フェデレーション学習
- Authors: Hang Chen, Collin Meese, Mark Nejad, Chien-Chung Shen,
- Abstract要約: フェデレートラーニング(Federated Learning)は、トラフィック予測のための有望なテクニックとして登場した。
現在のFLTPフレームワークにはリアルタイムモデル更新スキームがない。
個人化されたリアルタイム・フェデレーション学習方式であるNeighborFLを提案する。
- 参考スコア(独自算出の注目度): 8.495633193471853
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Low-latency traffic prediction is vital for smart city traffic management. Federated Learning has emerged as a promising technique for Traffic Prediction (FLTP), offering several advantages such as privacy preservation, reduced communication overhead, improved prediction accuracy, and enhanced adaptability to changing traffic conditions. However, majority of the current FLTP frameworks lack a real-time model updating scheme, which hinders their ability to continuously incorporate new incoming traffic data and adapt effectively to the changing dynamics of traffic trends. Another concern with the existing FLTP frameworks is their reliance on the conventional FL model aggregation method, which involves assigning an identical model (i.e., the global model) to all traffic monitoring devices to predict their individual local traffic trends, thereby neglecting the non-IID characteristics of traffic data collected in different locations. Building upon these findings and harnessing insights from reinforcement learning, we propose NeighborFL, an individualized real-time federated learning scheme that introduces a haversine distance-based and error-driven, personalized local models grouping heuristic from the perspective of each individual traffic node. This approach allows NeighborFL to create location-aware and tailored prediction models for each client while fostering collaborative learning. Simulations demonstrate the effectiveness of NeighborFL, offering improved real-time prediction accuracy over three baseline models, with one experimental setting showing a 16.9% reduction in MSE value compared to a naive FL setting.
- Abstract(参考訳): 低遅延交通予測はスマートシティ交通管理にとって不可欠である。
フェデレートラーニングは、プライバシーの保護、通信オーバーヘッドの低減、予測精度の向上、交通条件の変更への適応性の向上など、トラフィック予測(FLTP)の有望なテクニックとして登場した。
しかし、現在のFLTPフレームワークの大半はリアルタイムモデル更新スキームを欠いているため、新しいトラフィックデータを継続的に組み込むことができず、トラフィックトレンドの変化に効果的に適応することができない。
既存のFLTPフレームワークのもう1つの懸念は、すべてのトラフィック監視装置に同一のモデル(すなわちグローバルモデル)を割り当て、それぞれのローカルトラフィックトレンドを予測することで、異なる場所で収集されたトラフィックデータの非IID特性を無視する、従来のFLモデル集約手法に依存していることである。
これらの知見に基づいて強化学習からの洞察を生かしたNeighborFLを提案する。これは、各トラフィックノードの観点からヒューリスティックなグループ化を行うハーシン距離ベースおよびエラー駆動型パーソナライズされたローカルモデルを導入する、個別化されたリアルタイムフェデレーション学習スキームである。
このアプローチにより、NeighborFLは、共同学習を促進しながら、各クライアントに対して位置認識および調整された予測モデルを作成することができる。
シミュレーションにより、NeighborFLの有効性が示され、3つのベースラインモデルに対するリアルタイム予測精度が向上した。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Deep Learning Methods for Adjusting Global MFD Speed Estimations to Local Link Configurations [4.2185937778110825]
本研究では,MFDに基づくネットワーク平均速度とネットワーク構成を統合し,リンクの個々の速度を正確に推定するローカル補正係数(LCF)を提案する。
ネットワークの空間的構成と時間的ダイナミクスの両方をキャプチャするために、新しいディープラーニングフレームワークを使用します。
本モデルは,集約モデルの計算的利点を保ちながら,リンクレベルの交通速度推定の精度を向上させる。
論文 参考訳(メタデータ) (2024-05-23T07:37:33Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
本稿では,交通流予測のための深層学習(DL)モデルのための交通流物理に基づく変換機能を提案する。
この変換は、Newellがターゲット位置におけるトラフィックフローの非混雑フィルタを組み込んだもので、モデルがシステムのより広範なダイナミクスを学習できるようにする。
私たちのフレームワークの重要な利点は、データが利用できない新しい場所に転送できることです。
論文 参考訳(メタデータ) (2023-07-12T06:31:43Z) - Online Spatio-Temporal Correlation-Based Federated Learning for Traffic
Flow Forecasting [11.253575460227127]
本稿では,FLフレームワークにおけるオンライン学習(OL)方式を用いた交通流の予測に関する最初の研究を行う。
次に,オンライン時空間相関に基づくフェデレート学習(FedOSTC)という新しい予測手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T02:37:36Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
本稿では,ネットワークのグローバル性と局所性に着目したニューラルネットワークモデルを提案する。
2つの実世界のデータセットの実験により、このモデルが交通データの空間的時間的相関を精査できることが示されている。
論文 参考訳(メタデータ) (2020-11-30T09:21:43Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
フェデレートラーニング(Federated Learning、FL)は、集中型モデルの分散ラーニングのためのフレームワークである。
我々は,共通局所勾配勾配勾配(SGD)FLアルゴリズムを強化するコンバージェント OTA FL (COTAF) アルゴリズムを開発した。
我々は,COTAFにより誘導されるプリコーディングが,OTA FLを用いて訓練されたモデルの収束率と精度を顕著に向上させることを示す。
論文 参考訳(メタデータ) (2020-09-27T08:28:25Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度を約3~7%向上する。
実験の結果,提案モデルでは,NYC-TaxiデータセットとNYC-Bikeデータセットの予測精度が約3~7%向上した。
論文 参考訳(メタデータ) (2020-05-08T14:23:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。