論文の概要: In-Context Probing Approximates Influence Function for Data Valuation
- arxiv url: http://arxiv.org/abs/2407.12259v1
- Date: Wed, 17 Jul 2024 02:06:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-18 18:49:00.091465
- Title: In-Context Probing Approximates Influence Function for Data Valuation
- Title(参考訳): データ評価のための文脈内探索近似関数の影響
- Authors: Cathy Jiao, Gary Gao, Chenyan Xiong,
- Abstract要約: そこで本研究では,文脈内探索によるデータ評価が,学習データ選択に影響を及ぼすことを示す。
実験結果から, 文脈内探索と勾配に基づく影響フレームワークは, トレーニングデータのランク付け方法に類似していることがわかった。
- 参考スコア(独自算出の注目度): 16.404477234171733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data valuation quantifies the value of training data, and is used for data attribution (i.e., determining the contribution of training data towards model predictions), and data selection; both of which are important for curating high-quality datasets to train large language models. In our paper, we show that data valuation through in-context probing (i.e., prompting a LLM) approximates influence functions for selecting training data. We provide a theoretical sketch on this connection based on transformer models performing "implicit" gradient descent on its in-context inputs. Our empirical findings show that in-context probing and gradient-based influence frameworks are similar in how they rank training data. Furthermore, fine-tuning experiments on data selected by either method reveal similar model performance.
- Abstract(参考訳): データバリュエーションは、トレーニングデータの価値を定量化し、データ属性(すなわち、モデルの予測に対するトレーニングデータの貢献を決定する)やデータ選択に使用される。
本稿では,テキスト内探索(LLM)によるデータ評価が,学習データを選択するための影響関数を近似することを示す。
この接続に関する理論的スケッチは、コンテクスト内入力に対して「単純」勾配降下を行うトランスフォーマーモデルに基づくものである。
実験結果から, 文脈内探索と勾配に基づく影響フレームワークは, トレーニングデータのランク付け方法に類似していることがわかった。
さらに、どちらの手法でも選択されたデータに対する微調整実験により、類似したモデル性能が明らかとなった。
関連論文リスト
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Dataset Distillation-based Hybrid Federated Learning on Non-IID Data [19.01147151081893]
本稿では,データセット蒸留を統合して,独立および等分散(IID)データを生成するハイブリッド・フェデレーション学習フレームワークHFLDDを提案する。
クライアントを異種クラスタに分割し、クラスタ内の異なるクライアント間でのデータラベルがバランスが取れないようにします。
このトレーニングプロセスは、従来のIDデータに対するフェデレーション学習に似ているため、モデルトレーニングにおける非IIDデータの影響を効果的に軽減する。
論文 参考訳(メタデータ) (2024-09-26T03:52:41Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - LMD3: Language Model Data Density Dependence [78.76731603461832]
我々は,学習データ密度推定に基づいて,言語モデルタスクのパフォーマンスを個別の例レベルで解析する手法を開発した。
微調整データに対する制御的介入としてパラフレーズを用いた実験は、特定のテストクエリに対するトレーニング分布のサポートの増加が、測定可能な密度の増加をもたらすことを示した。
我々は,学習データのサブセットに対象モデルの予測が依存していることの統計的証拠を提供することができると結論付けた。
論文 参考訳(メタデータ) (2024-05-10T09:03:27Z) - A Universal Metric of Dataset Similarity for Cross-silo Federated Learning [0.0]
フェデレートラーニングは、データ共有なしにモデルトレーニングを容易にするために、医療などの分野でますます使われている。
本稿では,データセットの類似性を評価するための新しい指標を提案する。
本稿では,我々の測定値がモデル性能と堅牢かつ解釈可能な関係を示し,プライバシ保護方式で計算可能であることを示す。
論文 参考訳(メタデータ) (2024-04-29T15:08:24Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
我々は、訓練データとテストデータの間の相互影響を浮き彫りにして、ミラーレッド影響仮説を導入し、探求する。
具体的には、テスト予測に対するトレーニングデータの影響を評価することは、等価だが逆問題として再定義することができることを示唆している。
トレーニングポイント毎に前方パスとペアを組むことで,特定のテストサンプルの勾配を計算し,トレーニングデータの影響を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T03:43:05Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
影響スコア」は、データの重要なサブセットを特定するために使われる。
本稿では,言語分類タスクにおける影響スコアの適用性について検討する。
論文 参考訳(メタデータ) (2023-11-27T20:19:22Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
我々は,新しい評価手法であるCAT(Facterfactual Attentiveness Test)を提案する。
CATは、入力の一部を別の例から別の例に置き換えることで、予測を変更する注意深いモデルを期待することで、反事実を使用する。
実験データの精度が向上する一方, GPT3 は実演回数の増加により注意力の低下がみられた。
論文 参考訳(メタデータ) (2023-11-16T06:27:35Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Training Data Attribution for Diffusion Models [1.1733780065300188]
そこで本研究では,アンサンブルを用いて学習データが拡散モデルの出力にどのように影響するかを明らかにする新しい手法を提案する。
我々のアプローチでは、エンコードされたアンサンブル内の個々のモデルは、影響のあるトレーニング例の識別を可能にするために、訓練データ全体の分割を慎重に設計した上で訓練される。
得られたモデルアンサンブルは、トレーニングデータの影響の効率的なアブレーションを可能にし、トレーニングデータがモデル出力に与える影響を評価する。
論文 参考訳(メタデータ) (2023-06-03T18:36:12Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Understanding Influence Functions and Datamodels via Harmonic Analysis [36.86262318584668]
個々のデータポイントがテストデータに対するモデルの予測に与える影響を推定する。
それらは、データ中毒の検出、有用で有害な例の検出、データポイントのグループの影響などに使われる。
近年、Ilyasら[2022]は、データモデルと呼ばれる線形回帰手法を導入し、テストデータに対するトレーニングポイントの効果を予測した。
本稿では,このような興味深い経験的現象の理論的理解を深めることを目的とする。
論文 参考訳(メタデータ) (2022-10-03T16:45:33Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITEは、ID(In-distriion)データの不連続領域を特定するためのデータ中心のフレームワークである。
我々は,Data-SUITEの性能保証とカバレッジ保証を実証的に検証する。
論文 参考訳(メタデータ) (2022-02-17T18:58:31Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Deep Stable Learning for Out-Of-Distribution Generalization [27.437046504902938]
深層ニューラルネットワークに基づくアプローチは、同様の分布を持つデータとトレーニングデータをテストする際に顕著なパフォーマンスを達成した。
トレーニングとテストデータ間の分散シフトの影響を排除することは、パフォーマンス向上の深層モデルの構築に不可欠です。
トレーニングサンプルの学習重みによる特徴間の依存関係を除去し,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-04-16T03:54:21Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
論文 参考訳(メタデータ) (2021-03-05T00:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。