論文の概要: Graph Signal Processing for Cross-Domain Recommendation
- arxiv url: http://arxiv.org/abs/2407.12374v1
- Date: Wed, 17 Jul 2024 07:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 18:07:45.413667
- Title: Graph Signal Processing for Cross-Domain Recommendation
- Title(参考訳): クロスドメインレコメンデーションのためのグラフ信号処理
- Authors: Jeongeun Lee, Seongku Kang, Won-Yong Shin, Jeongwhan Choi, Noseong Park, Dongha Lee,
- Abstract要約: クロスドメインレコメンデーション(CDR)は、高密度ドメインからのユーザ-イテムインタラクションを活用して、データ空間とコールドスタート問題を緩和することにより、従来のレコメンデーションシステムを拡張する。
既存のCDR手法の多くは、重複するユーザの割合と、ソースドメインとターゲットドメインの固有の相違に敏感である。
GSPに基づく統一CDRフレームワークであるCGSPを提案し、ターゲットのみの類似性とソースブリッジの類似性を柔軟に組み合わせて構築されたクロスドメイン類似性グラフを利用する。
- 参考スコア(独自算出の注目度): 37.87497277046321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-domain recommendation (CDR) extends conventional recommender systems by leveraging user-item interactions from dense domains to mitigate data sparsity and the cold start problem. While CDR offers substantial potential for enhancing recommendation performance, most existing CDR methods suffer from sensitivity to the ratio of overlapping users and intrinsic discrepancy between source and target domains. To overcome these limitations, in this work, we explore the application of graph signal processing (GSP) in CDR scenarios. We propose CGSP, a unified CDR framework based on GSP, which employs a cross-domain similarity graph constructed by flexibly combining target-only similarity and source-bridged similarity. By processing personalized graph signals computed for users from either the source or target domain, our framework effectively supports both inter-domain and intra-domain recommendations. Our empirical evaluation demonstrates that CGSP consistently outperforms various encoder-based CDR approaches in both intra-domain and inter-domain recommendation scenarios, especially when the ratio of overlapping users is low, highlighting its significant practical implication in real-world applications.
- Abstract(参考訳): クロスドメインレコメンデーション(CDR)は、高密度ドメインからのユーザ-イテムインタラクションを活用して、データ空間とコールドスタート問題を緩和することにより、従来のレコメンデーションシステムを拡張する。
CDRはレコメンデーション性能を高める大きな可能性を秘めているが、既存のCDR手法の多くは、重複するユーザの比率と、ソースドメインとターゲットドメインの固有の相違に敏感である。
これらの制約を克服するため,本研究では,CDRシナリオにおけるグラフ信号処理(GSP)の適用について検討する。
GSPに基づく統一CDRフレームワークであるCGSPを提案し、ターゲットのみの類似性とソースブリッジの類似性を柔軟に組み合わせて構築されたクロスドメイン類似性グラフを利用する。
ソースドメインとターゲットドメインの両方から計算したパーソナライズされたグラフ信号を処理することにより、ドメイン間のレコメンデーションとドメイン内のレコメンデーションの両方を効果的にサポートする。
我々の経験的評価では、CGSPはドメイン内およびドメイン間レコメンデーションシナリオにおいて、特に重複ユーザの比率が低い場合において、様々なエンコーダベースのCDRアプローチを一貫して上回り、実際のアプリケーションにおいてその重要な実践的影響を浮き彫りにしている。
関連論文リスト
- Pacer and Runner: Cooperative Learning Framework between Single- and Cross-Domain Sequential Recommendation [25.228420612022788]
クロスドメインシークエンシャルレコメンデーション(CDSR)は、複数のドメインの情報を活用することでレコメンデーションパフォーマンスを向上させる。
しかし、CDSRは、負の転送により特定の領域でSDSR(Single-Domain Sequential Recommendation)と比較して性能が劣る可能性がある。
本稿では,各領域の負の移動度を推定し,予測損失に対する重み係数として適応的に割り当てるCDSRモデルを提案する。
論文 参考訳(メタデータ) (2024-07-15T21:14:13Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR(Cross-Domain Recommendation)は、レコメンデーションシステムにおけるデータ空間の問題に対する重要な解決策である。
我々は、グラフ畳み込み層を異なるドメイン間のモデル関係に適用する、エンドツーエンドのヘテロジニアスネットワークアーキテクチャであるHGDRを提案する。
実世界のデータセットとオンラインA/Bテストの実験により,提案したモデルがドメイン間の情報を効果的に伝達し,SOTAの性能に到達できることが証明された。
論文 参考訳(メタデータ) (2024-07-01T02:27:54Z) - FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling [15.159012729198619]
我々は,ハイパーグラフ信号デカップリングを用いた新しいクロスドメイン勧告フレームワークであるFedHCDRを提案する。
本研究では,ハイパーグラフ信号デカップリング(HSD)と呼ばれる手法を導入し,ユーザ特徴をドメイン排他的・ドメイン共有的特徴に分離する。
3つの実世界のシナリオで実施された大規模な実験は、FedHCDRが既存のベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-03-05T03:40:39Z) - Towards Open-world Cross-Domain Sequential Recommendation: A Model-Agnostic Contrastive Denoising Approach [16.09514981871128]
クロスドメインシーケンシャルレコメンデーション(CDSR)は、従来のシーケンシャルレコメンデーション(SR)システムに存在するデータ空間の問題に対処することを目的としている。
現実世界のレコメンデーションシステムでは、CDSRシナリオは通常、疎い振る舞いを持つ長い尾を持つユーザーの大多数と、一つのドメインにしか存在しないコールドスタートユーザーで構成される。
論文 参考訳(メタデータ) (2023-11-08T15:33:06Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - A Deep Framework for Cross-Domain and Cross-System Recommendations [18.97641276417075]
CDR(Cross-Domain Recommendation)とCSR(Cross-System Recommendation)は、レコメンダシステムにおけるデータ空間の問題に対処する、有望なソリューションである。
本稿では,行列因子化(MF)モデルと完全接続型ディープニューラルネットワーク(DNN)に基づく,DCDCSRと呼ばれるクロスドメインおよびクロスシステムレコメンデーションのためのディープフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-14T06:11:17Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
部分的なドメイン適応は、より大きく多様なソースドメインからの知識を、より少ないクラス数でより小さなターゲットドメインに適応させることを目的としています。
ドメイン適応の最近の実践は、ターゲットドメインの擬似ラベルを組み込むことで、効果的な特徴を抽出する。
ターゲットデータを少数のソースデータのみにアライメントすることが不可欠である。
論文 参考訳(メタデータ) (2020-08-26T03:18:53Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。