ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference
- URL: http://arxiv.org/abs/2407.12442v1
- Date: Wed, 17 Jul 2024 09:52:20 GMT
- Title: ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference
- Authors: Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, Wayne Zhang,
- Abstract summary: We re-investigate the architecture of CLIP, and identify residual connections as the primary source of noise that degrades segmentation quality.
We propose ClearCLIP, a novel approach that decomposes CLIP's representations to enhance open-vocabulary semantic segmentation.
- Score: 32.852004564832455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of large-scale pretrained Vision-Language Models (VLMs) especially CLIP in various open-vocabulary tasks, their application to semantic segmentation remains challenging, producing noisy segmentation maps with mis-segmented regions. In this paper, we carefully re-investigate the architecture of CLIP, and identify residual connections as the primary source of noise that degrades segmentation quality. With a comparative analysis of statistical properties in the residual connection and the attention output across different pretrained models, we discover that CLIP's image-text contrastive training paradigm emphasizes global features at the expense of local discriminability, leading to noisy segmentation results. In response, we propose ClearCLIP, a novel approach that decomposes CLIP's representations to enhance open-vocabulary semantic segmentation. We introduce three simple modifications to the final layer: removing the residual connection, implementing the self-self attention, and discarding the feed-forward network. ClearCLIP consistently generates clearer and more accurate segmentation maps and outperforms existing approaches across multiple benchmarks, affirming the significance of our discoveries.
Related papers
- Self-Calibrated CLIP for Training-Free Open-Vocabulary Segmentation [19.749490092520006]
Self-Calibrated CLIP (SC-CLIP) is a training-free method that calibrates CLIP to produce finer-language representations.
SC-CLIP boosts the performance of vanilla CLIP ViT-L/14 by 6.8 times.
arXiv Detail & Related papers (2024-11-24T15:14:05Z) - ResCLIP: Residual Attention for Training-free Dense Vision-language Inference [27.551367463011008]
Cross-correlation of self-attention in CLIP's non-final layers also exhibits localization properties.
We propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block.
The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference.
arXiv Detail & Related papers (2024-11-24T14:14:14Z) - Harnessing Vision Foundation Models for High-Performance, Training-Free Open Vocabulary Segmentation [26.786890883280062]
We introduce Trident, a training-free framework that first splices features extracted by CLIP and DINO from sub-images, then leverages SAM's encoder to create a correlation matrix for global aggregation.
Trident achieves a significant improvement in the mIoU across eight benchmarks compared with the current SOTA, increasing from 44.4 to 48.6.Code.
arXiv Detail & Related papers (2024-11-14T06:31:20Z) - Explore the Potential of CLIP for Training-Free Open Vocabulary Semantic Segmentation [38.16802763051431]
We propose CLIPtrase, a training-free semantic segmentation strategy.
It enhances local feature awareness through recalibrated self-correlation among patches.
Experiments show that we are 22.3% ahead of CLIP on average on 9 segmentation benchmarks.
arXiv Detail & Related papers (2024-07-11T08:12:16Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
Multimodal Large Language Models (MLLMs) excel at classifying fine-grained categories.
This paper introduces a Retrieving And Ranking augmented method for MLLMs.
Our proposed approach not only addresses the inherent limitations in fine-grained recognition but also preserves the model's comprehensive knowledge base.
arXiv Detail & Related papers (2024-03-20T17:59:55Z) - Open-Vocabulary Segmentation with Semantic-Assisted Calibration [73.39366775301382]
We study open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with contextual prior of CLIP.
We present a Semantic-assisted CAlibration Network (SCAN) to achieve state-of-the-art performance on open-vocabulary segmentation benchmarks.
arXiv Detail & Related papers (2023-12-07T07:00:09Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z) - DenseCLIP: Extract Free Dense Labels from CLIP [130.3830819077699]
Contrastive Language-Image Pre-training (CLIP) has made a remarkable breakthrough in open-vocabulary zero-shot image recognition.
DenseCLIP+ surpasses SOTA transductive zero-shot semantic segmentation methods by large margins.
Our finding suggests that DenseCLIP can serve as a new reliable source of supervision for dense prediction tasks.
arXiv Detail & Related papers (2021-12-02T09:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.