論文の概要: Easing Maintenance of Academic Static Analyzers
- arxiv url: http://arxiv.org/abs/2407.12499v2
- Date: Tue, 5 Nov 2024 14:11:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 20:36:48.490232
- Title: Easing Maintenance of Academic Static Analyzers
- Title(参考訳): 学術静的分析装置の保守性向上
- Authors: Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné,
- Abstract要約: Mopsaは、音を出すことを目的とした静的分析プラットフォームである。
この記事では、2017年以来のMopsaのメンテナンスを簡素化するために、私たちが作り出したツールとテクニックについて説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Academic research in static analysis produces software implementations. These implementations are time-consuming to develop and some need to be maintained in order to enable building further research upon the implementation. While necessary, these processes can be quickly challenging. This article documents the tools and techniques we have come up with to simplify the maintenance of Mopsa since 2017. Mopsa is a static analysis platform that aims at being sound. First, we describe an automated way to measure precision that does not require any baseline of true bugs obtained by manually inspecting the results. Further, it improves transparency of the analysis, and helps discovering regressions during continuous integration. Second, we have taken inspiration from standard tools observing the concrete execution of a program to design custom tools observing the abstract execution of the analyzed program itself, such as abstract debuggers and profilers. Finally, we report on some cases of automated testcase reduction.
- Abstract(参考訳): 静的解析における学術研究は、ソフトウェアの実装を生み出す。
これらの実装は開発に時間がかかり、その実装に関するさらなる研究を構築するためにメンテナンスされる必要がある。
必要ではあるが、これらのプロセスはすぐに困難になる可能性がある。
この記事では、2017年以来のMopsaのメンテナンスを簡素化するために、私たちが作り出したツールとテクニックについて説明する。
Mopsaは、音を出すことを目的とした静的分析プラットフォームである。
まず、手動で結果を調べることによって得られる真のバグのベースラインを一切必要としない精度を自動で測定する方法について述べる。
さらに、分析の透明性を改善し、継続的インテグレーション中のレグレッションの検出を支援する。
第2に,プログラムの具体的な実行を観察する標準ツールからインスピレーションを得て,解析プログラム自体の抽象的な実行を観察するカスタムツール,例えば抽象デバッガやプロファイラを設計した。
最後に,自動テストケースリダクションのいくつかの症例について報告する。
関連論文リスト
- Leveraging Slither and Interval Analysis to build a Static Analysis Tool [0.0]
本稿では,現在最先端の分析ツールで検出されていない,あるいは完全に検出されていない欠陥の発見に向けた進展について述べる。
我々は,Slither上に構築された動作ソリューションを開発し,各命令の実行時の契約状態を評価する。
論文 参考訳(メタデータ) (2024-10-31T09:28:09Z) - Scaling Symbolic Execution to Large Software Systems [0.0]
シンボル実行は、プログラム検証とバグ検出ソフトウェアの両方で使用される一般的な静的解析手法である。
我々は、Clang Static Analyzerと呼ばれるエラー検出フレームワークと、その周辺に構築されたインフラストラクチャーであるCodeCheckerに焦点を当てた。
論文 参考訳(メタデータ) (2024-08-04T02:54:58Z) - Customizing Static Analysis using Codesearch [1.7205106391379021]
様々な静的解析アプリケーションを記述するのによく使われる言語は、Datalogである。
アプリケーションセキュリティと静的分析の専門家のための慣れ親しんだフレームワークを提供すると同時に、開発者がカスタムの静的解析ツールを簡単に構築できるようにすることを目標としています。
我々のアプローチでは,高速ランタイムを持つプログラムのみを含むDatalogの亜種であるStarLangという言語を導入しています。
論文 参考訳(メタデータ) (2024-04-19T09:50:02Z) - Comparison of Static Analysis Architecture Recovery Tools for
Microservice Applications [43.358953895199264]
マイクロサービスアプリケーションのための静的解析アーキテクチャ回復ツールを,マルチボーカルな文献レビューを通じて同定する。
次に、共通データセット上でそれらを実行し、アーキテクチャ回復における測定された有効性を比較する。
論文 参考訳(メタデータ) (2024-03-11T17:26:51Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - E&V: Prompting Large Language Models to Perform Static Analysis by
Pseudo-code Execution and Verification [7.745665775992235]
大きな言語モデル(LLM)は、ソフトウェア工学のタスクに新しい機能を提供する。
LLMは擬似コードの実行をシミュレートし、最小限の努力で擬似コードにエンコードされた静的解析を効果的に実行する。
E&Vは、外部のオラクルを必要とせずに擬似コード実行の検証プロセスを含む。
論文 参考訳(メタデータ) (2023-12-13T19:31:00Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
大規模言語モデル(LLM)は、数秒とゼロショットの設定で複雑な推論を行うことができる。
各推論ステップは、コアLLM機能を超えて計算をサポートする外部ツールに依存することができる。
プログラムとして中間推論ステップを自動生成するために凍結LDMを使用するフレームワークであるART(Automatic Reasoning and Tool-use)を導入する。
論文 参考訳(メタデータ) (2023-03-16T01:04:45Z) - Chain of Thought Imitation with Procedure Cloning [129.62135987416164]
本稿では,一連の専門家計算を模倣するために,教師付きシーケンス予測を適用したプロシージャクローニングを提案する。
本研究では、専門家の行動の中間計算を模倣することで、プロシージャのクローン化により、未知の環境構成に顕著な一般化を示すポリシーを学習できることを示す。
論文 参考訳(メタデータ) (2022-05-22T13:14:09Z) - MQBench: Towards Reproducible and Deployable Model Quantization
Benchmark [53.12623958951738]
MQBenchは、モデル量子化アルゴリズムの評価、分析、およびデプロイ可能性のベンチマークを行う最初の試みである。
我々は、CPU、GPU、ASIC、DSPを含む実世界のデプロイのための複数のプラットフォームを選択し、最先端の量子化アルゴリズムを評価する。
包括的な分析を行い、直感的、直感的、あるいは反直感的な洞察を見出す。
論文 参考訳(メタデータ) (2021-11-05T23:38:44Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Self-Supervised Log Parsing [59.04636530383049]
大規模ソフトウェアシステムは、大量の半構造化ログレコードを生成する。
既存のアプローチは、ログ特化や手動ルール抽出に依存している。
本稿では,自己教師付き学習モデルを用いて解析タスクをマスク言語モデリングとして定式化するNuLogを提案する。
論文 参考訳(メタデータ) (2020-03-17T19:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。