論文の概要: ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks
- arxiv url: http://arxiv.org/abs/2407.12638v1
- Date: Wed, 17 Jul 2024 15:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 16:35:48.599745
- Title: ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks
- Title(参考訳): ARTEMIS: 変圧器ニューラルネット用混合アナログ確率型In-DRAM加速器
- Authors: Salma Afifi, Ishan Thakkar, Sudeep Pasricha,
- Abstract要約: ARTEMISは、トランスフォーマーモデルのための混合アナログ確率型インDRAMアクセラレータである。
解析の結果、ARTEMISはGPU、TPU、CPU、最先端のPIMトランスハードウェアアクセラレータと比較して、少なくとも3.0倍のスピードアップ、1.8倍のエネルギー、そして1.9倍のエネルギー効率を示した。
- 参考スコア(独自算出の注目度): 2.9699290794642366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformers have emerged as a powerful tool for natural language processing (NLP) and computer vision. Through the attention mechanism, these models have exhibited remarkable performance gains when compared to conventional approaches like recurrent neural networks (RNNs) and convolutional neural networks (CNNs). Nevertheless, transformers typically demand substantial execution time due to their extensive computations and large memory footprint. Processing in-memory (PIM) and near-memory computing (NMC) are promising solutions to accelerating transformers as they offer high compute parallelism and memory bandwidth. However, designing PIM/NMC architectures to support the complex operations and massive amounts of data that need to be moved between layers in transformer neural networks remains a challenge. We propose ARTEMIS, a mixed analog-stochastic in-DRAM accelerator for transformer models. Through employing minimal changes to the conventional DRAM arrays, ARTEMIS efficiently alleviates the costs associated with transformer model execution by supporting stochastic computing for multiplications and temporal analog accumulations using a novel in-DRAM metal-on-metal capacitor. Our analysis indicates that ARTEMIS exhibits at least 3.0x speedup, 1.8x lower energy, and 1.9x better energy efficiency compared to GPU, TPU, CPU, and state-of-the-art PIM transformer hardware accelerators.
- Abstract(参考訳): トランスフォーマーは自然言語処理(NLP)とコンピュータビジョンのための強力なツールとして登場した。
注意機構を通じて、これらのモデルは、リカレントニューラルネットワーク(RNN)や畳み込みニューラルネットワーク(CNN)といった従来のアプローチと比較して、顕著なパフォーマンス向上を示した。
それにもかかわらず、トランスフォーマーは通常、広範囲の計算と大きなメモリフットプリントのために、かなりの実行時間を要求する。
メモリ内処理(PIM)とニアメモリコンピューティング(NMC)は、高い計算並列性とメモリ帯域幅を提供するトランスフォーマーを高速化するための、有望なソリューションである。
しかしながら、トランスフォーマーニューラルネットワークの層間で移動する必要がある複雑な操作と大量のデータをサポートするために、PIM/NMCアーキテクチャを設計することは、依然として課題である。
変換器モデルのための混合アナログ確率型インDRAM加速器ARTEMISを提案する。
従来のDRAMアレイの最小限の変更により、ARTEMISは、新しいDRAM金属オンメタルコンデンサを用いて、乗算および時間的アナログ蓄積のための確率計算をサポートすることにより、トランスフォーマモデル実行に伴うコストを効率的に軽減する。
解析の結果、ARTEMISはGPU、TPU、CPU、最先端のPIMトランスハードウェアアクセラレータと比較して、少なくとも3.0倍のスピードアップ、1.8倍のエネルギー、そして1.9倍のエネルギー効率を示した。
関連論文リスト
- Spiking Transformer Hardware Accelerators in 3D Integration [5.426379844893919]
スパイキングニューラルネットワーク(SNN)は計算の強力なモデルであり、リソース制約のあるエッジデバイスやニューロモルフィックハードウェアに適している。
近年出現したスパイク変圧器は、スパイク動作のバイナリ特性を生かして、性能と効率性が期待できる。
論文 参考訳(メタデータ) (2024-11-11T22:08:11Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - MoEUT: Mixture-of-Experts Universal Transformers [75.96744719516813]
ユニバーサルトランスフォーマー(UT)は、合成一般化の学習において標準トランスフォーマーよりも有利である。
層共有は、同じ次元を持つ非共有モデルと比較してパラメータ数を大幅に削減する。
従来の作業では、言語モデリングのようなパラメータ数の支配的なタスクと競合する共有層トランスフォーマー設計の提案に成功しなかった。
論文 参考訳(メタデータ) (2024-05-25T03:24:32Z) - Accelerator-driven Data Arrangement to Minimize Transformers Run-time on
Multi-core Architectures [5.46396577345121]
人工知能におけるトランスフォーマーモデルの複雑さは、計算コスト、メモリ使用量、エネルギー消費を拡大します。
ハードウェアアクセラレーターのカーネルサイズに支配される新しいメモリアレンジメント戦略を提案し,オフチップデータアクセスを効果的に最小化する。
我々の手法は、最先端の変圧器を用いた推論を実行する場合、最大2.8倍の速度向上を実現することができる。
論文 参考訳(メタデータ) (2023-12-20T13:01:25Z) - RACE-IT: A Reconfigurable Analog CAM-Crossbar Engine for In-Memory
Transformer Acceleration [21.196696191478885]
Transformer ModelはDeep Neural Networks(DNN)の最先端を表現している。
これらのモデルを処理するには、かなりの計算資源が必要で、結果としてかなりのメモリフットプリントが要求される。
本稿では,トランスフォーマ内で様々な非MVM操作を行うことのできる新しいAnalog Content Addressable Memory(ACAM)構造を提案する。
論文 参考訳(メタデータ) (2023-11-29T22:45:39Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) は、メモリコストを最小限に抑えるために、自己アテンションとフィードフォワードネットワーク融合のブロックワイズ計算である。
メモリ効率を維持しながら、長い入力シーケンスを処理することにより、BPTはバニラ変換器の32倍、以前のメモリ効率の4倍のトレーニングシーケンスを可能にする。
論文 参考訳(メタデータ) (2023-05-30T19:25:51Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - Reliability-Aware Deployment of DNNs on In-Memory Analog Computing
Architectures [0.0]
In-Memory Analog Computing (IMAC) 回路は、アナログ領域におけるMVMとNLVの両方の操作を実現することにより、信号変換器の必要性を取り除く。
我々は、ディープニューラルネットワーク(DNN)に大規模な行列を複数の小さなIMACサブアレイに展開する実践的なアプローチを導入し、ノイズや寄生虫の影響を軽減する。
論文 参考訳(メタデータ) (2022-10-02T01:43:35Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
一般のN:M空間パターンを利用して, フレキシブルかつ効率的にトランスフォーマーを高速化するアルゴリズム・ハードウェア協調最適化フレームワークを提案する。
我々は、N:Mスパーストランスをデプロイする際の大幅な高速化を実現するために、フレキシブルで効率的なハードウェアアーキテクチャ、すなわちSTAを提案する。
実験の結果, 他の方法と比較して, IDPを用いて生成したN:Mスパース変圧器は, トレーニング効率の高い精度で平均6.7%向上することがわかった。
論文 参考訳(メタデータ) (2022-08-12T04:51:49Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
本研究はトランスフォーマーモデルにおける高効率事前学習目標について検討する。
マスクトークンの除去と損失時のアウトプット全体の考慮が,パフォーマンス向上に不可欠な選択であることを証明する。
論文 参考訳(メタデータ) (2021-04-20T00:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。