論文の概要: Reliability-Aware Deployment of DNNs on In-Memory Analog Computing
Architectures
- arxiv url: http://arxiv.org/abs/2211.00590v1
- Date: Sun, 2 Oct 2022 01:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 15:18:05.233919
- Title: Reliability-Aware Deployment of DNNs on In-Memory Analog Computing
Architectures
- Title(参考訳): インメモリアナログコンピューティングアーキテクチャにおけるdnnの信頼性を考慮した配置
- Authors: Md Hasibul Amin, Mohammed Elbtity, Ramtin Zand
- Abstract要約: In-Memory Analog Computing (IMAC) 回路は、アナログ領域におけるMVMとNLVの両方の操作を実現することにより、信号変換器の必要性を取り除く。
我々は、ディープニューラルネットワーク(DNN)に大規模な行列を複数の小さなIMACサブアレイに展開する実践的なアプローチを導入し、ノイズや寄生虫の影響を軽減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional in-memory computing (IMC) architectures consist of analog
memristive crossbars to accelerate matrix-vector multiplication (MVM), and
digital functional units to realize nonlinear vector (NLV) operations in deep
neural networks (DNNs). These designs, however, require energy-hungry signal
conversion units which can dissipate more than 95% of the total power of the
system. In-Memory Analog Computing (IMAC) circuits, on the other hand, remove
the need for signal converters by realizing both MVM and NLV operations in the
analog domain leading to significant energy savings. However, they are more
susceptible to reliability challenges such as interconnect parasitic and noise.
Here, we introduce a practical approach to deploy large matrices in DNNs onto
multiple smaller IMAC subarrays to alleviate the impacts of noise and
parasitics while keeping the computation in the analog domain.
- Abstract(参考訳): 従来のインメモリ・コンピューティング(IMC)アーキテクチャは、行列ベクトル乗算(MVM)を加速するアナログメモリクロスバーと、ディープニューラルネットワーク(DNN)における非線形ベクトル(NLV)演算を実現するデジタル機能ユニットで構成されている。
しかし、これらの設計は、システム全体の電力の95%以上を放出できるエネルギー空調信号変換ユニットを必要とする。
一方、インメモリアナログコンピューティング(imac)回路は、アナログドメインにおけるmvmとnlvの両方の操作を実現することで、信号変換器の必要性をなくし、大幅な省エネルギーに繋がる。
しかしながら、相互接続寄生虫や騒音のような信頼性の問題に弱い。
本稿では,DNNの大規模行列を複数の小さなIMACサブアレイ上に展開し,アナログ領域に留まりながらノイズや寄生虫の影響を軽減するための実践的アプローチを提案する。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks [2.9699290794642366]
ARTEMISは、トランスフォーマーモデルのための混合アナログ確率型インDRAMアクセラレータである。
解析の結果、ARTEMISはGPU、TPU、CPU、最先端のPIMトランスハードウェアアクセラレータと比較して、少なくとも3.0倍のスピードアップ、1.8倍のエネルギー、そして1.9倍のエネルギー効率を示した。
論文 参考訳(メタデータ) (2024-07-17T15:08:14Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - RACE-IT: A Reconfigurable Analog CAM-Crossbar Engine for In-Memory
Transformer Acceleration [21.196696191478885]
Transformer ModelはDeep Neural Networks(DNN)の最先端を表現している。
これらのモデルを処理するには、かなりの計算資源が必要で、結果としてかなりのメモリフットプリントが要求される。
本稿では,トランスフォーマ内で様々な非MVM操作を行うことのできる新しいAnalog Content Addressable Memory(ACAM)構造を提案する。
論文 参考訳(メタデータ) (2023-11-29T22:45:39Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
本稿では,アナログ領域の周波数ベーステンソル変換を用いた周波数領域ニューラルネットワークのエネルギー効率向上手法を提案する。
提案手法は,変換行列のトレーニング可能なパラメータを不要にすることで,よりコンパクトなセルを実現する。
16$times$16のクロスバーで8ビット入力処理を行い,Watt当たりの1602テラ演算のエネルギー効率を実現する。
論文 参考訳(メタデータ) (2023-09-04T19:19:39Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
スプリット機械学習(ML)では、ニューラルネットワーク(NN)の異なるパーティションが異なる計算ノードによって実行される。
通信負担を軽減するため、OAC(Over-the-air calculation)は通信と同時に計算の全てまたは一部を効率的に実装することができる。
論文 参考訳(メタデータ) (2022-10-07T15:39:11Z) - Neural-PIM: Efficient Processing-In-Memory with Neural Approximation of
Peripherals [11.31429464715989]
本稿では,ディープラーニングタスクを効率的に高速化する新しいPIMアーキテクチャを提案する。
アナログ集積回路とニューラル近似周辺回路で必要となるA/D変換を最小化する。
異なるベンチマークによる評価では、Neural-PIMはエネルギー効率を5.36x (1.73x)向上し、スループットを3.43x (1.59x)向上する。
論文 参考訳(メタデータ) (2022-01-30T16:14:49Z) - Interconnect Parasitics and Partitioning in Fully-Analog In-Memory
Computing Architectures [0.0]
完全アナログIMCアーキテクチャに実装したディープニューラルネットワーク(DNN)モデルの精度に及ぼすワイヤ寄生抵抗と容量の影響について検討した。
本稿では,アナログ領域における計算を保ちながら寄生虫の影響を軽減するための分配機構を提案する。
分割処理に要する余分な回路により,高消費電力化による精度の向上が期待できる。
論文 参考訳(メタデータ) (2022-01-29T02:29:27Z) - AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On
Analog Compute-in-Memory Accelerator [50.31646817567764]
本稿では,キーワードスポッティング (KWS) と視覚覚醒語 (VWW) を常用するTinyMLモデルについて述べる。
アナログ非イデオロギーに面した精度を維持するため、包括的学習手法を詳述する。
また、プログラム可能な最小領域位相変化メモリ(PCM)アナログCiMアクセラレータであるAON-CiMについて述べる。
論文 参考訳(メタデータ) (2021-11-10T10:24:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。