論文の概要: Profiling quantum circuits for their efficient execution on single- and multi-core architectures
- arxiv url: http://arxiv.org/abs/2407.12640v1
- Date: Wed, 17 Jul 2024 15:08:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 16:35:48.597186
- Title: Profiling quantum circuits for their efficient execution on single- and multi-core architectures
- Title(参考訳): シングルコアおよびマルチコアアーキテクチャ上での効率的な実行のための量子回路のプロファイリング
- Authors: Medina Bandic, Pablo le Henaff, Anabel Ovide, Pau Escofet, Sahar Ben Rached, Santiago Rodrigo, Hans van Someren, Sergi Abadal, Eduard Alarcon, Carmen G. Almudever, Sebastian Feld,
- Abstract要約: 本研究では,量子ビット相互作用グラフとゲート依存性グラフから抽出したグラフ理論に基づくメトリクスを紹介する。
量子ビット相互作用とゲート依存性グラフの両方に根ざしたパラメータ間の接続と、量子回路マッピングのパフォーマンス指標を明らかにする。
- 参考スコア(独自算出の注目度): 1.7340157845783293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Application-specific quantum computers offer the most efficient means to tackle problems intractable by classical computers. Realizing these architectures necessitates a deep understanding of quantum circuit properties and their relationship to execution outcomes on quantum devices. Our study aims to perform for the first time a rigorous examination of quantum circuits by introducing graph theory-based metrics extracted from their qubit interaction graph and gate dependency graph alongside conventional parameters describing the circuit itself. This methodology facilitates a comprehensive analysis and clustering of quantum circuits. Furthermore, it uncovers a connection between parameters rooted in both qubit interaction and gate dependency graphs, and the performance metrics for quantum circuit mapping, across a range of established quantum device and mapping configurations. Among the various device configurations, we particularly emphasize modular (i.e., multi-core) quantum computing architectures due to their high potential as a viable solution for quantum device scalability. This thorough analysis will help us to: i) identify key attributes of quantum circuits that affect the quantum circuit mapping performance metrics; ii) predict the performance on a specific chip for similar circuit structures; iii) determine preferable combinations of mapping techniques and hardware setups for specific circuits; and iv) define representative benchmark sets by clustering similarly structured circuits.
- Abstract(参考訳): アプリケーション固有の量子コンピュータは、古典的なコンピュータによって引き起こされる問題に対処する最も効率的な手段を提供する。
これらのアーキテクチャを実現するには、量子回路特性の深い理解と、量子デバイス上での実行結果との関係が必要である。
本研究は、量子回路自体を記述する従来のパラメータと並行して、量子ビット相互作用グラフとゲート依存性グラフから抽出したグラフ理論に基づくメトリクスを導入することで、量子回路の厳密な検証を初めて行うことを目的とする。
この手法は量子回路の包括的な解析とクラスタリングを促進する。
さらに、量子ビット相互作用とゲート依存性グラフの両方に根ざしたパラメータと、確立された量子デバイスとマッピング構成の範囲にわたる量子回路マッピングのパフォーマンス指標との接続を明らかにする。
様々なデバイス構成の中で、我々は特に、量子デバイススケーラビリティのための実行可能なソリューションとして高い可能性のために、モジュラー(つまりマルチコア)量子コンピューティングアーキテクチャを強調している。
この徹底的な分析は、次のような助けになるでしょう。
一 量子回路マッピング性能指標に影響を与える量子回路の重要な属性を識別すること。
二 類似回路構造のための特定チップの性能を予測すること。
三 特定回路のマッピング技術及びハードウェア装置の好適な組み合わせを決定すること。
iv) 同様に構造化された回路をクラスタリングすることで、代表ベンチマークセットを定義する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search [0.9932551365711049]
本稿では,量子処理ユニットと制御プロトコルのネイティブゲートに基づく比較解析を行うソフトウェアツールを提案する。
開発されたソフトウェアYAQQ(Yet Another Quantum Quantizer)は、最適化された量子ゲートセットの発見を可能にする。
論文 参考訳(メタデータ) (2024-06-25T14:55:35Z) - Distributed quantum architecture search [0.0]
ニューラルネットワークにインスパイアされた変分量子アルゴリズムは、量子コンピューティングにおいて新しいアプローチとなっている。
量子アーキテクチャ探索は、ゲートパラメータとともに回路構造を調整することでこの問題に対処し、高性能回路構造を自動的に発見する。
そこで我々は,特定の量子ビット接続を伴う相互接続型量子処理ユニットのための分散量子回路構造を自動設計することを目的とした,エンドツーエンドの分散量子アーキテクチャ探索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-10T13:28:56Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
量子回路として表現される量子アルゴリズムは、量子システムの性能を評価するためのベンチマークとして用いられる。
しかしランダム回路は、実際の量子アルゴリズム固有の性質を欠いているため、代表的なベンチマークではない。
この研究は、我々が「リアルに見える」回路と呼ぶものを生成することによって、既存の量子回路データセットを強化することを目的としている。
論文 参考訳(メタデータ) (2024-02-20T20:02:21Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
本稿では,量子プロセッサの固有対称性を利用する量子回路再マッピングアルゴリズムを提案する。
このアルゴリズムは、対称性を用いて探索空間を制約し、全ての位相的に等価な回路マッピングを同定し、ベクトル計算を用いて各マッピングのスコアリングを高速化する。
論文 参考訳(メタデータ) (2023-10-27T10:04:34Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
我々は、様々な量子プロセッサの動作を数値的にシミュレートし、特徴付ける。
我々は,各デバイスの性能をベンチマークラインと比較することにより,量子複雑性を同定し,評価する。
我々は、回路の出力状態が平均して高い純度である限り、偏化ベースのベンチマークが成り立つことを発見した。
論文 参考訳(メタデータ) (2023-04-10T23:01:10Z) - Interaction graph-based characterization of quantum benchmarks for
improving quantum circuit mapping techniques [1.351147045576948]
量子回路の特性を量子ビット相互作用グラフ特性によって拡張することを提案する。
本研究は, 相互作用グラフに基づくパラメータと, 量子デバイスの既存構成に対するマッピング性能指標との相関関係を明らかにする。
論文 参考訳(メタデータ) (2022-12-13T15:24:37Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。