TourLLM: Enhancing LLMs with Tourism Knowledge
- URL: http://arxiv.org/abs/2407.12791v1
- Date: Tue, 18 Jun 2024 09:15:46 GMT
- Title: TourLLM: Enhancing LLMs with Tourism Knowledge
- Authors: Qikai Wei, Mingzhi Yang, Jinqiang Wang, Wenwei Mao, Jiabo Xu, Huansheng Ning,
- Abstract summary: We construct a supervised fine-tuning dataset for the culture and tourism domain, named Cultour.
This dataset consists of three parts: tourism knowledge base QA data, travelogues data, and tourism diversity QA data.
We propose TourLLM, a Qwen-based model supervised fine-tuned with Cultour, to improve the quality of the information about attractions and travel planning.
- Score: 3.034710104407876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, large language models (LLMs) have demonstrated their effectiveness in various natural language processing (NLP) tasks. However, the lack of tourism knowledge limits the performance of LLMs in tourist attraction presentations and travel planning. To address this challenge, we constructed a supervised fine-tuning dataset for the culture and tourism domain, named Cultour. This dataset consists of three parts: tourism knowledge base QA data, travelogues data, and tourism diversity QA data. Additionally, we propose TourLLM, a Qwen-based model supervised fine-tuned with Cultour, to improve the quality of the information provided about attractions and travel planning. To evaluate the performance of TourLLM, we employed both automatic and human evaluation, and we proposed a human evaluation criterion named CRA (Consistency, Readability, Availability). The experimental results demonstrate the effectiveness of the responses generated by the TourLLM. Our proposed Cultour is accessible at https://github.com/mrweiqk/Cultour.
Related papers
- To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning [54.9340658451129]
To the Globe (TTG) is a real-time demo system that takes natural language requests from users and translates it to symbolic form.
The overall system takes 5 seconds to reply to the user request with guaranteed itineraries.
When evaluated by users, TTG achieves consistently high Net Promoter Scores (NPS) of 35-40% on generated itinerary.
arXiv Detail & Related papers (2024-10-21T19:30:05Z) - RAG-Optimized Tibetan Tourism LLMs: Enhancing Accuracy and Personalization [30.193180894907663]
Existing large language models (LLMs) face challenges in personalized recommendation capabilities and the generation of content that can sometimes produce hallucinations.
This study proposes an optimization scheme for Tibet tourism LLMs based on retrieval-augmented generation (RAG) technology.
arXiv Detail & Related papers (2024-08-21T21:34:01Z) - Research on Tibetan Tourism Viewpoints information generation system based on LLM [26.88700599751214]
This study delves into the ramifications of informational disparities at tourist sites on Tibetan tourism.
It addresses the challenge of establishing the Large Language Model (LLM) evaluation criteria.
It introduces an innovative approach, the DualGen Bridge AI system, employing supervised fine-tuning techniques.
arXiv Detail & Related papers (2024-07-18T14:31:53Z) - Agent Planning with World Knowledge Model [88.4897773735576]
We introduce parametric World Knowledge Model (WKM) to facilitate agent planning.
We develop WKM, providing prior task knowledge to guide the global planning and dynamic state knowledge to assist the local planning.
Our method can achieve superior performance compared to various strong baselines.
arXiv Detail & Related papers (2024-05-23T06:03:19Z) - Wireless Crowd Detection for Smart Overtourism Mitigation [50.031356998422815]
This chapter describes a low-cost approach to monitoring overtourism based on mobile devices' wireless activity.
The crowding sensors count the number of surrounding mobile devices, by detecting trace elements of wireless technologies.
They run detection programs for several technologies, and fingerprinting analysis results are only stored locally in an anonymized database.
arXiv Detail & Related papers (2024-02-14T13:20:24Z) - Large Language Models for Travel Behavior Prediction [8.069026355648049]
We propose to use large language models to predict travel behavior with prompt engineering without data-based parameter learning.
Specifically, we carefully design our prompts that include 1) task description, 2) travel characteristics, 3) individual attributes, and 4) guides of thinking with domain knowledge.
Results show that, though no training samples are provided, LLM-based predictions have competitive accuracy and F1-score as canonical supervised learning methods.
arXiv Detail & Related papers (2023-11-30T04:35:55Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Forecasting Inter-Destination Tourism Flow via a Hybrid Deep Learning
Model [7.769537533798236]
ITF (Inter-Destination Tourism Flow) is commonly used for tourism management on tasks like the classification of destinations' roles and visitation pattern mining.
It is difficult to understand how the volume of ITF is influenced by features of the multi-attraction system.
We propose a graph-based hybrid deep learning model to predict the ITF.
arXiv Detail & Related papers (2023-05-05T03:48:12Z) - Multimodal Text Style Transfer for Outdoor Vision-and-Language
Navigation [71.67507925788577]
This paper introduces a Multimodal Text Style Transfer (MTST) learning approach for outdoor navigation tasks.
We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external navigation dataset.
Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task.
arXiv Detail & Related papers (2020-07-01T04:29:07Z) - Tourism Demand Forecasting: An Ensemble Deep Learning Approach [4.516340427736994]
We use historical tourist arrival data, economic variable data and search intensity index (SII) data to forecast tourist arrivals in Beijing.
Our proposed B-SAKE approach outperforms benchmark models in terms of level accuracy, directional accuracy and even statistical significance.
Both bagging and stacked autoencoder can effectively alleviate the challenges brought by tourism big data and improve the forecasting performance of the models.
arXiv Detail & Related papers (2020-02-19T02:23:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.