論文の概要: Building Understandable Messaging for Policy and Evidence Review (BUMPER) with AI
- arxiv url: http://arxiv.org/abs/2407.12812v1
- Date: Thu, 27 Jun 2024 05:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 08:47:38.357888
- Title: Building Understandable Messaging for Policy and Evidence Review (BUMPER) with AI
- Title(参考訳): AIによるポリシーとエビデンスレビュー(BUMPER)のための理解可能なメッセージングの構築
- Authors: Katherine A. Rosenfeld, Maike Sonnewald, Sonia J. Jindal, Kevin A. McCarthy, Joshua L. Proctor,
- Abstract要約: BUMPER(Building Understandable Messaging for Policy and Evidence Review)において,大規模言語モデル(LLM)を使用するためのフレームワークを導入する。
LLMは多様なメディアの大規模なデータベースを理解し合成するためのインタフェースを提供することができる。
この枠組みは、政策立案者に対する科学的証拠のアクセシビリティと信頼性を促進することができると我々は主張する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a framework for the use of large language models (LLMs) in Building Understandable Messaging for Policy and Evidence Review (BUMPER). LLMs are proving capable of providing interfaces for understanding and synthesizing large databases of diverse media. This presents an exciting opportunity to supercharge the translation of scientific evidence into policy and action, thereby improving livelihoods around the world. However, these models also pose challenges related to access, trust-worthiness, and accountability. The BUMPER framework is built atop a scientific knowledge base (e.g., documentation, code, survey data) by the same scientists (e.g., individual contributor, lab, consortium). We focus on a solution that builds trustworthiness through transparency, scope-limiting, explicit-checks, and uncertainty measures. LLMs are rapidly being adopted and consequences are poorly understood. The framework addresses open questions regarding the reliability of LLMs and their use in high-stakes applications. We provide a worked example in health policy for a model designed to inform measles control programs. We argue that this framework can facilitate accessibility of and confidence in scientific evidence for policymakers, drive a focus on policy-relevance and translatability for researchers, and ultimately increase and accelerate the impact of scientific knowledge used for policy decisions.
- Abstract(参考訳): 本稿では,BUMPER(Building Understandable Messaging for Policy and Evidence Review)において,大規模言語モデル(LLM)を使用するためのフレームワークを紹介する。
LLMは多様なメディアの巨大なデータベースを理解し合成するためのインタフェースを提供することができる。
これは、科学的証拠の政策と行動への翻訳をスーパーチャージャーするエキサイティングな機会を示し、世界中の生活を改善する。
しかしながら、これらのモデルはアクセス、信頼性、説明責任に関する課題も生み出します。
BUMPERフレームワークは、同じ科学者(例えば、個々のコントリビュータ、ラボ、コンソーシアム)によって科学知識ベース(例えば、ドキュメント、コード、調査データ)の上に構築されている。
透明性、スコープ制限、明示的なチェック、不確実性などを通じて信頼性を高めるソリューションに重点を置いています。
LLMは急速に採用され、その結果はよく分かっていない。
このフレームワークは、LLMの信頼性と、高スループットアプリケーションでの使用に関するオープンな疑問に対処する。
麻疹コントロールプログラムを通知するためのモデルとして,健康政策における実例を示す。
この枠組みは、政策立案者にとっての科学的証拠のアクセシビリティと信頼性の促進、研究者にとっての政策関連性と翻訳性への注力、そして最終的には政策決定に使用される科学的知識の影響を増大させ、加速させることができると論じる。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Understanding the Interplay between Parametric and Contextual Knowledge for Large Language Models [85.13298925375692]
大規模言語モデル(LLM)は、事前訓練中に大量の知識を符号化する。
LLMは文脈知識(CK)を取り入れることで拡張できる
LLMは複雑な問題を解決するために、内部PKと外部CKを効果的に統合できるのか?
論文 参考訳(メタデータ) (2024-10-10T23:09:08Z) - Persuasion Games using Large Language Models [0.0]
大型言語モデル (LLM) は、人間のような文章を解釈し、生成することのできる、恐ろしい道具として登場した。
本稿では,LCMがユーザ視点を形作り,その決定を特定のタスクに影響を及ぼす可能性について考察する。
この機能は、投資、クレジットカード、保険など、さまざまな分野のアプリケーションを見つける。
論文 参考訳(メタデータ) (2024-08-28T15:50:41Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - Towards Trustworthy AI: A Review of Ethical and Robust Large Language Models [1.7466076090043157]
大きな言語モデル(LLM)は多くの分野を変革できるが、その急速な開発は、監視、倫理的創造、ユーザ信頼の構築に重大な課題を生み出している。
この総合的なレビューは、意図しない害、透明性の欠如、攻撃に対する脆弱性、人的価値との整合性、環境への影響など、LLMにおける重要な信頼の問題について考察する。
これらの課題に対処するため、倫理的監視、業界説明責任、規制、公的な関与を組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-06-01T14:47:58Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Can Reinforcement Learning support policy makers? A preliminary study
with Integrated Assessment Models [7.1307809008103735]
統合アセスメントモデル(IAM)は、社会と経済の主な特徴とバイオスフィアを1つのモデルフレームワークに結びつける試みである。
本稿では、IAMを探索し、より原理化された方法で解の空間を探索するために、現代の強化学習が利用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-12-11T17:04:30Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
本研究の目的は,LLMが外部知識から信頼できる情報を識別する能力を評価することである。
本ベンチマークは,質問応答とテキスト生成という2つのタスクから構成される。
論文 参考訳(メタデータ) (2023-11-14T13:24:19Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - When Giant Language Brains Just Aren't Enough! Domain Pizzazz with
Knowledge Sparkle Dust [15.484175299150904]
本稿では,大規模言語モデルの実践的ユースケースへの適応におけるギャップを埋めることを目的とした経験的分析を提案する。
本研究は, 推論の課題によるケーススタディとして, 保険の質問応答(QA)タスクを選択する。
本課題に基づいて,保険政策ルールブックやDBPediaから抽出した付加的な知識により,LLMに依存した新たなモデルを設計する。
論文 参考訳(メタデータ) (2023-05-12T03:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。