論文の概要: Token-Supervised Value Models for Enhancing Mathematical Reasoning Capabilities of Large Language Models
- arxiv url: http://arxiv.org/abs/2407.12863v1
- Date: Fri, 12 Jul 2024 13:16:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 20:02:37.914566
- Title: Token-Supervised Value Models for Enhancing Mathematical Reasoning Capabilities of Large Language Models
- Title(参考訳): 大規模言語モデルの数学的推論能力向上のためのToken-Supervised Value Model
- Authors: Jung Hyun Lee, June Yong Yang, Byeongho Heo, Dongyoon Han, Kang Min Yoo,
- Abstract要約: 大規模言語モデル(LLM)は、ステップバイステップの推論チェーンを通じて、数学における顕著な問題解決能力を実証している。
それらは、その後の推論チェーンの品質や、自己回帰的なトークン・バイ・トーケン生成の性質による最終回答に影響を及ぼすエラーの推論に影響を受けやすい。
近年の研究では、推論経路の生成を導くために外部検証器の採用が提案されているが、既存の研究はステップバイステップラベルで訓練されたモデルを利用している。
- 参考スコア(独自算出の注目度): 35.29961848648335
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive problem-solving capabilities in mathematics through step-by-step reasoning chains. However, they are susceptible to reasoning errors that impact the quality of subsequent reasoning chains and the final answer due to language models' autoregressive token-by-token generating nature. Recent works have proposed adopting external verifiers to guide the generation of reasoning paths, but existing works utilize models that have been trained with step-by-step labels to assess the correctness of token-by-token reasoning chains. Consequently, they struggle to recognize discriminative details of tokens within a reasoning path and lack the ability to evaluate whether an intermediate reasoning path is on a promising track toward the correct final answer. To amend the lack of sound and token-grained math-verification signals, we devise a novel training scheme for verifiers that apply token-level supervision with the expected cumulative reward (i.e., value). Furthermore, we propose a practical formulation of the cumulative reward by reducing it to finding the probability of future correctness of the final answer and thereby enabling the empirical estimation of the value. Experimental results on mathematical reasoning benchmarks show that Token-Supervised Value Model (TVM) can outperform step-by-step verifiers on GSM8K and MATH with Mistral and Llama.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ステップバイステップの推論チェーンを通じて、数学における顕著な問題解決能力を実証している。
しかし、後続の推論連鎖の品質と最終的な答えに影響を及ぼす誤りを推論することは、言語モデルの自己回帰的トークン・バイ・トーケン生成の性質に起因する。
近年の研究では、推論経路の生成を導くために外部検証器の採用が提案されているが、既存の研究では、トークン・バイ・トークン・推論・チェーンの正確性を評価するために、ステップ・バイ・ステップのラベルで訓練されたモデルを利用している。
その結果、彼らは推論経路内のトークンの識別的詳細を認識するのに苦労し、中間推論経路が正しい最終回答に向けて有望な軌道上にあるかどうかを評価する能力に欠ける。
そこで我々は,有意な累積報酬(すなわち値)にトークンレベルの監督を適用した検証者のための新しい訓練手法を考案した。
さらに,最終回答の今後の正しさの確率を減らし,結果の実証的推定を可能にすることで,累積報酬の実用的定式化を提案する。
数学的推論ベンチマークによる実験結果から,Token-Supervised Value Model (TVM) は,Mistral と Llama を用いた GSM8K と MATH のステップバイステップ検証よりも優れていることが示された。
関連論文リスト
- LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback [71.95402654982095]
本研究では,自然言語フィードバック型検証器Math-Minosを提案する。
実験の結果,少量の自然言語フィードバックが検証器の性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-06-20T06:42:27Z) - Evaluating Mathematical Reasoning Beyond Accuracy [50.09931172314218]
推論ステップの品質を評価するための新しい方法論であるReasonEvalを紹介します。
我々は、ReasonEvalが人間のラベル付きデータセット上で最先端のパフォーマンスを達成することを示す。
我々は、ReasonEvalがデータ選択において重要な役割を果たすことを観察する。
論文 参考訳(メタデータ) (2024-04-08T17:18:04Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
我々は、LMを、事前学習時に見られる間接的推論経路を集約することで、新たな結論を導出すると考えている。
我々は、推論経路を知識/推論グラフ上のランダムウォークパスとして定式化する。
複数のKGおよびCoTデータセットの実験と分析により、ランダムウォークパスに対するトレーニングの効果が明らかにされた。
論文 参考訳(メタデータ) (2024-02-05T18:25:51Z) - OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning [15.59540726867483]
我々は、ガイド付き復号法では、ステップごとの正当性を保証するよりも、不完全推論経路の可能性を評価する方が有利であると主張している。
誘導復号化のための$textitoutcomeの監督が本質的に価値モデルとして機能するという発見に触発されて、アウトカム管理価値モデル(OVM)を提案する。
GSM8KとGame of 24の2つの多段階数学的推論データセットに対する実験により,OVMモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2023-11-16T09:56:28Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。