GenTool: Enhancing Tool Generalization in Language Models through Zero-to-One and Weak-to-Strong Simulation
- URL: http://arxiv.org/abs/2502.18990v1
- Date: Wed, 26 Feb 2025 09:54:33 GMT
- Title: GenTool: Enhancing Tool Generalization in Language Models through Zero-to-One and Weak-to-Strong Simulation
- Authors: Jie He, Jennifer Neville, Mengting Wan, Longqi Yang, Hui Liu, Xiaofeng Xu, Xia Song, Jeff Z. Pan, Pei Zhou,
- Abstract summary: Large Language Models (LLMs) can enhance their capabilities as AI assistants by integrating external tools.<n>We present GenTool, a novel training framework that prepares LLMs for diverse generalization challenges in tool utilization.<n>Our approach addresses two fundamental dimensions critical for real-world applications: Zero-to-One Generalization and Weak-to-Strong Generalization.
- Score: 37.85029997364506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) can enhance their capabilities as AI assistants by integrating external tools, allowing them to access a wider range of information. While recent LLMs are typically fine-tuned with tool usage examples during supervised fine-tuning (SFT), questions remain about their ability to develop robust tool-usage skills and can effectively generalize to unseen queries and tools. In this work, we present GenTool, a novel training framework that prepares LLMs for diverse generalization challenges in tool utilization. Our approach addresses two fundamental dimensions critical for real-world applications: Zero-to-One Generalization, enabling the model to address queries initially lacking a suitable tool by adopting and utilizing one when it becomes available, and Weak-to-Strong Generalization, allowing models to leverage enhanced versions of existing tools to solve queries. To achieve this, we develop synthetic training data simulating these two dimensions of tool usage and introduce a two-stage fine-tuning approach: optimizing tool ranking, then refining tool selection. Through extensive experiments across four generalization scenarios, we demonstrate that our method significantly enhances the tool-usage capabilities of LLMs ranging from 1B to 8B parameters, achieving performance that surpasses GPT-4o. Furthermore, our analysis also provides valuable insights into the challenges LLMs encounter in tool generalization.
Related papers
- FamilyTool: A Multi-hop Personalized Tool Use Benchmark [94.1158032740113]
We introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG)
FamilyTool challenges Large Language Models with queries spanning 1 to 3 relational hops.
Experiments reveal significant performance gaps in state-of-the-art LLMs.
arXiv Detail & Related papers (2025-04-09T10:42:36Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.<n>Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - MetaTool: Facilitating Large Language Models to Master Tools with Meta-task Augmentation [25.360660222418183]
We present MetaTool, a novel tool learning methodology designed to generalize across any reusable toolset.
By incorporating meta-task data into task-oriented training, our method significantly enhances the performance of open-source Large Language Models.
arXiv Detail & Related papers (2024-07-15T10:15:41Z) - Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
Large language models (LLMs) can effectively handle a certain amount of tools through in-context learning or fine-tuning.
In real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component.
We propose to enhance tool retrieval with iterative feedback from the large language model.
arXiv Detail & Related papers (2024-06-25T11:12:01Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraTool is a novel benchmark designed to improve and evaluate Large Language Models' ability in tool utilization.
It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving.
A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage.
arXiv Detail & Related papers (2024-01-30T16:52:56Z) - Confucius: Iterative Tool Learning from Introspection Feedback by
Easy-to-Difficult Curriculum [42.36892453363961]
We propose a novel tool learning framework to train large language models (LLMs) to use complicated tools in real-world scenarios.
We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum.
We then propose the Iterative Self-instruct from Introspective Feedback to dynamically construct the dataset to improve the ability to use the complicated tool.
arXiv Detail & Related papers (2023-08-27T07:53:00Z) - Large Language Models as Tool Makers [85.00361145117293]
We introduce a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Our approach consists of two phases: 1) tool making: an LLM acts as the tool maker that crafts tools for a set of tasks. 2) tool using: another LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving.
arXiv Detail & Related papers (2023-05-26T17:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.