Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
- URL: http://arxiv.org/abs/2407.12950v1
- Date: Wed, 17 Jul 2024 18:32:41 GMT
- Title: Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI
- Authors: Qi Huang, Emanuele Mezzi, Osman Mutlu, Miltiadis Kofinas, Vidya Prasad, Shadnan Azwad Khan, Elena Ranguelova, Niki van Stein,
- Abstract summary: We introduce a novel metric for measuring semantic continuity in Explainable AI methods and machine learning models.
We conduct experiments to observe how incremental changes in input affect the explanations provided by different XAI methods.
- Score: 1.628012064605754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel metric for measuring semantic continuity in Explainable AI methods and machine learning models. We posit that for models to be truly interpretable and trustworthy, similar inputs should yield similar explanations, reflecting a consistent semantic understanding. By leveraging XAI techniques, we assess semantic continuity in the task of image recognition. We conduct experiments to observe how incremental changes in input affect the explanations provided by different XAI methods. Through this approach, we aim to evaluate the models' capability to generalize and abstract semantic concepts accurately and to evaluate different XAI methods in correctly capturing the model behaviour. This paper contributes to the broader discourse on AI interpretability by proposing a quantitative measure for semantic continuity for XAI methods, offering insights into the models' and explainers' internal reasoning processes, and promoting more reliable and transparent AI systems.
Related papers
- SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals [0.0]
This paper introduces SCENE (Soft Counterfactual Evaluation for Natural language Explainability), a novel evaluation method.
By focusing on token-based substitutions, SCENE creates contextually appropriate and semantically meaningful Soft Counterfactuals.
SCENE provides valuable insights into the strengths and limitations of various XAI techniques.
arXiv Detail & Related papers (2024-08-08T16:36:24Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches.
We propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap)
We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold.
arXiv Detail & Related papers (2024-05-30T16:04:35Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - AS-XAI: Self-supervised Automatic Semantic Interpretation for CNN [5.42467030980398]
We propose a self-supervised automatic semantic interpretable artificial intelligence (AS-XAI) framework.
It utilizes transparent embedding semantic extraction spaces and row-centered principal component analysis (PCA) for global semantic interpretation of model decisions.
The proposed approach offers broad fine-grained practical applications, including shared semantic interpretation under out-of-distribution categories.
arXiv Detail & Related papers (2023-12-02T10:06:54Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Developing a Fidelity Evaluation Approach for Interpretable Machine
Learning [2.2448567386846916]
Explainable AI (XAI) methods are used to improve the interpretability of complex models.
In particular, methods to evaluate the fidelity of the explanation to the underlying black box require further development.
Our evaluations suggest that the internal mechanism of the underlying predictive model, the internal mechanism of the explainable method used and model and data complexity all affect explanation fidelity.
arXiv Detail & Related papers (2021-06-16T00:21:16Z) - Robust Semantic Interpretability: Revisiting Concept Activation Vectors [0.0]
Interpretability methods for image classification attempt to expose whether the model is systematically biased or attending to the same cues as a human would.
Our proposed Robust Concept Activation Vectors (RCAV) quantifies the effects of semantic concepts on individual model predictions and on model behavior as a whole.
arXiv Detail & Related papers (2021-04-06T20:14:59Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.