Emerging Quadrature Lattices of Kerr Combs
- URL: http://arxiv.org/abs/2407.13049v1
- Date: Wed, 17 Jul 2024 23:30:07 GMT
- Title: Emerging Quadrature Lattices of Kerr Combs
- Authors: Eran Lustig, Melissa A. Guidry, Daniil M. Lukin, Shanhui Fan, Jelena Vuckovic,
- Abstract summary: We experimentally study non-Hermitian lattice effects in photonic quadrature lattices for the first time.
Our work unifies two major fields, quantum non-Hermitian physics and Kerr combs.
- Score: 0.17476232824732776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quadrature lattice is a coupled array of squeezed vacuum field quadratures that offers new avenues in shaping the quantum properties of multimode light [1-3]. Such lattices are described within the framework of non-Hermitian, non-dissipative physics and exhibit intriguing lattice phenomena such as lattice exceptional points, edge-states, entanglement and non-Hermitian skin effect, offering fundamentally new methods for controlling quantum fluctuations [1, 4]. Nonlinear resonators are suitable for studying multimode pair-generation processes and squeezing which are non-dissipative in \chi(2) and \chi(3) materials [5-12], but observing non-Hermitian lattice phenomena in photonic quadrature lattices was not achieved. Remarkably, in dissipative Kerr microcombs [13], which have revolutionized photonic technology, such lattices emerge and govern the quantum noise that leads to comb formation. Thus, they offer a unique opportunity to realize quadrature lattices, and to study and manipulate multimode quantum noise which is essential for any quantum technology. Here, we experimentally study non-Hermitian lattice effects in photonic quadrature lattices for the first time. Our photonic quadrature lattices emerge at Kerr microcomb transitions, allowing us to observe fundamental connections between dispersion symmetry, frequency-dependent squeezed supermodes, and non-Hermitian lattice physics in an integrated setup. Our work unifies two major fields, quantum non-Hermitian physics and Kerr combs, and opens the door to utilizing dissipative Kerr combs to experimentally explore rich non-Hermitian physics in the quantum regime, engineer quantum light, and develop new tools to study the quantum noise and formation of Kerr combs.
Related papers
- Quantum walks of correlated photons in non-Hermitian photonic lattices [7.927053393110687]
Entanglement entropy characterizes the correlation of multi-particles and unveils the crucial features of open quantum systems.
We propose and experimentally realize quantum walks of two indistinguishable photons in engineered non-Hermitian photonic lattices.
We experimentally reveal the suppression of entanglement that is caused by the skin effect in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-16T09:44:32Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Electrically defined quantum dots for bosonic excitons [0.0]
We show electrically-defined quantum dots for excitons in monolayer semiconductors.
Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton--exciton interactions.
arXiv Detail & Related papers (2024-02-29T15:45:22Z) - Non-Hermiticity in quantum nonlinear optics through symplectic
transformations [0.0]
We show that second-quantised Hermitian Hamiltonians on the Fock space give rise to non-Hermitian effective Hamiltonians.
We create a quantum optical scheme for simulating arbitrary non-unitary processes by way of singular value decomposition.
arXiv Detail & Related papers (2023-10-06T18:41:46Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Chiral Cavity Quantum Electrodynamics [0.0]
We explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice.
We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon.
arXiv Detail & Related papers (2021-09-09T22:26:36Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.