Krait: A Backdoor Attack Against Graph Prompt Tuning
- URL: http://arxiv.org/abs/2407.13068v1
- Date: Thu, 18 Jul 2024 00:25:49 GMT
- Title: Krait: A Backdoor Attack Against Graph Prompt Tuning
- Authors: Ying Song, Rita Singh, Balaji Palanisamy,
- Abstract summary: Graph prompt tuning has emerged as a promising paradigm to effectively transfer general graph knowledge from pre-trained models to downstream tasks.
We conduct the first study to investigate such vulnerability, revealing that backdoors can disguise benign graph prompts, thus evading detection.
We introduce Krait, a novel graph prompt backdoor. Specifically, we propose a simple yet effective model-agnostic metric called label non-uniformity homophily poisoned to select candidates.
- Score: 11.541661336266703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph prompt tuning has emerged as a promising paradigm to effectively transfer general graph knowledge from pre-trained models to various downstream tasks, particularly in few-shot contexts. However, its susceptibility to backdoor attacks, where adversaries insert triggers to manipulate outcomes, raises a critical concern. We conduct the first study to investigate such vulnerability, revealing that backdoors can disguise benign graph prompts, thus evading detection. We introduce Krait, a novel graph prompt backdoor. Specifically, we propose a simple yet effective model-agnostic metric called label non-uniformity homophily to select poisoned candidates, significantly reducing computational complexity. To accommodate diverse attack scenarios and advanced attack types, we design three customizable trigger generation methods to craft prompts as triggers. We propose a novel centroid similarity-based loss function to optimize prompt tuning for attack effectiveness and stealthiness. Experiments on four real-world graphs demonstrate that Krait can efficiently embed triggers to merely 0.15% to 2% of training nodes, achieving high attack success rates without sacrificing clean accuracy. Notably, in one-to-one and all-to-one attacks, Krait can achieve 100% attack success rates by poisoning as few as 2 and 22 nodes, respectively. Our experiments further show that Krait remains potent across different transfer cases, attack types, and graph neural network backbones. Additionally, Krait can be successfully extended to the black-box setting, posing more severe threats. Finally, we analyze why Krait can evade both classical and state-of-the-art defenses, and provide practical insights for detecting and mitigating this class of attacks.
Related papers
- EvA: Evolutionary Attacks on Graphs [50.13398588415462]
Even a slight robustness in the graph structure can cause a significant drop in the accuracy of graph neural networks (GNNs)<n>We introduce a few simple yet effective enhancements of an evolutionary-based algorithm to solve the discrete optimization problem directly.<n>Among our experiments, EvA shows $sim$11% additional drop in accuracy on average compared to the best previous attack.
arXiv Detail & Related papers (2025-07-10T22:50:58Z) - Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses [50.53476890313741]
We propose an effective, stealthy, and persistent backdoor attack on FedGL.
We develop a certified defense for any backdoored FedGL model against the trigger with any shape at any location.
Our attack results show our attack can obtain > 90% backdoor accuracy in almost all datasets.
arXiv Detail & Related papers (2024-07-12T02:43:44Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
Graph Neural Networks (GNNs) have achieved promising results in tasks such as node classification and graph classification.
Recent studies reveal that GNNs are vulnerable to backdoor attacks, posing a significant threat to their real-world adoption.
We propose using random edge dropping to detect backdoors and theoretically show that it can efficiently distinguish poisoned nodes from clean ones.
arXiv Detail & Related papers (2024-06-14T08:46:26Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
We show that few-shot learning can still be vulnerable to backdoor attacks.
Our method demonstrates a high Attack Success Rate (ASR) in FSL tasks with different few-shot learning paradigms.
This study reveals that few-shot learning still suffers from backdoor attacks, and its security should be given attention.
arXiv Detail & Related papers (2023-12-31T06:43:36Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Unnoticeable Backdoor Attacks on Graph Neural Networks [29.941951380348435]
In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget.
arXiv Detail & Related papers (2023-02-11T01:50:58Z) - GUAP: Graph Universal Attack Through Adversarial Patching [12.484396767037925]
Graph neural networks (GNNs) are a class of effective deep learning models for node classification tasks.
In this work, we consider an easier attack harder to be noticed, through adversarially patching the graph with new nodes and edges.
We develop an algorithm, named GUAP, that meanwhile achieves a high attack success rate but preserves the prediction accuracy.
arXiv Detail & Related papers (2023-01-04T18:02:29Z) - Defending Against Backdoor Attack on Graph Nerual Network by
Explainability [7.147386524788604]
We propose the first backdoor detection and defense method on GNN.
For graph data, current backdoor attack focus on manipulating the graph structure to inject the trigger.
We find that there are apparent differences between benign samples and malicious samples in some explanatory evaluation metrics.
arXiv Detail & Related papers (2022-09-07T03:19:29Z) - Query-based Adversarial Attacks on Graph with Fake Nodes [32.67989796394633]
We propose a novel adversarial attack by introducing a set of fake nodes to the original graph.
Specifically, we query the victim model for each victim node to acquire their most adversarial feature.
Our attack is performed in a practical and unnoticeable manner.
arXiv Detail & Related papers (2021-09-27T14:19:17Z) - Poisoned classifiers are not only backdoored, they are fundamentally
broken [84.67778403778442]
Under a commonly-studied backdoor poisoning attack against classification models, an attacker adds a small trigger to a subset of the training data.
It is often assumed that the poisoned classifier is vulnerable exclusively to the adversary who possesses the trigger.
In this paper, we show empirically that this view of backdoored classifiers is incorrect.
arXiv Detail & Related papers (2020-10-18T19:42:44Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
We propose the first backdoor attack to graph neural networks (GNN)
In our backdoor attack, a GNN predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph.
Our empirical results show that our backdoor attacks are effective with a small impact on a GNN's prediction accuracy for clean testing graphs.
arXiv Detail & Related papers (2020-06-19T14:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.