論文の概要: Using LLMs to Automate Threat Intelligence Analysis Workflows in Security Operation Centers
- arxiv url: http://arxiv.org/abs/2407.13093v1
- Date: Thu, 18 Jul 2024 01:42:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:03:47.711411
- Title: Using LLMs to Automate Threat Intelligence Analysis Workflows in Security Operation Centers
- Title(参考訳): LLMを使ってセキュリティ運用センターの脅威情報分析ワークフローを自動化する
- Authors: PeiYu Tseng, ZihDwo Yeh, Xushu Dai, Peng Liu,
- Abstract要約: このプロジェクトの目的は、CTIレポートの分析に関わる労働集約的な反復的なタスクを置き換えるAIエージェントの開発である。
LLM(例えばGPT-4)の革命的能力を利用するが、人間の介入は不要である。
- 参考スコア(独自算出の注目度): 2.4632515131525676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SIEM systems are prevalent and play a critical role in a variety of analyst workflows in Security Operation Centers. However, modern SIEMs face a big challenge: they still cannot relieve analysts from the repetitive tasks involved in analyzing CTI (Cyber Threat Intelligence) reports written in natural languages. This project aims to develop an AI agent to replace the labor intensive repetitive tasks involved in analyzing CTI reports. The agent exploits the revolutionary capabilities of LLMs (e.g., GPT-4), but it does not require any human intervention.
- Abstract(参考訳): SIEMシステムは広く普及しており、Security Operation Centerのさまざまなアナリストワークフローにおいて重要な役割を果たす。
しかし、現代のSIEMは大きな課題に直面しており、自然言語で書かれたCTI(Cyber Threat Intelligence)レポートを解析する反復的なタスクからアナリストを解放することはできません。
このプロジェクトの目的は、CTIレポートの分析に関わる労働集約的な反復的なタスクを置き換えるAIエージェントの開発である。
LLM(例えば、GPT-4)の革命的能力を利用するが、人間の介入は不要である。
関連論文リスト
- Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - AutoAttacker: A Large Language Model Guided System to Implement
Automatic Cyber-attacks [13.955084410934694]
大規模言語モデル (LLM) は、自然言語処理における印象的な結果を示している。
LLMは必然的に前進するので、前と後の両方の攻撃段階を自動化できるかもしれない。
この研究は、防衛システムやチームが、野生で使用する前に予防的に新しい攻撃行動を検出することを学ぶのに役立つ。
論文 参考訳(メタデータ) (2024-03-02T00:10:45Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based
Agents [50.034049716274005]
我々は、LSMベースのエージェントに対して、典型的な安全脅威であるバックドアアタックの1つを調査する第一歩を踏み出した。
まず、エージェントバックドア攻撃の一般的な枠組みを定式化し、その後、エージェントバックドア攻撃の様々な形態について徹底的に分析する。
本稿では,2つの典型的なエージェント・タスクに対するエージェント・バックドア・アタックのバリエーションを実装するためのデータ中毒機構を提案する。
論文 参考訳(メタデータ) (2024-02-17T06:48:45Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - On the Uses of Large Language Models to Interpret Ambiguous Cyberattack
Descriptions [1.6317061277457001]
戦術、テクニック、手順(TTP)は、攻撃者が脆弱性を悪用する方法と理由を説明することである。
あるセキュリティ専門家によって書かれたTTP記述は、別のセキュリティ専門家によって非常に異なる解釈が可能であるため、サイバーセキュリティ操作の混乱につながる。
AIの進歩は、サイバーオペレーションにおけるさまざまなタスクを支援するために自然言語処理(NLP)アルゴリズムの使用の増加につながっている。
論文 参考訳(メタデータ) (2023-06-24T21:08:15Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Automatic Mapping of Unstructured Cyber Threat Intelligence: An
Experimental Study [1.1470070927586016]
機械学習(ML)を用いた攻撃手法における非構造化サイバー脅威情報(CTI)の自動分類に関する実験的検討を行った。
CTI分析のための2つの新しいデータセットにコントリビュートし、従来の機械学習モデルとディープラーニングモデルの両方を含む、いくつかのMLモデルを評価した。
本稿では,このタスクにおいてMLがどのように機能するか,どの分類器が最善か,どの条件下か,その主な原因である分類誤り,CTI分析の課題について,いくつかの教訓を提示する。
論文 参考訳(メタデータ) (2022-08-25T15:01:42Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Trojaning Language Models for Fun and Profit [53.45727748224679]
TROJAN-LMは、悪質に製作されたLMがホストNLPシステムを故障させる新しいタイプのトロイの木馬攻撃である。
セキュリティクリティカルなNLPタスクにおいて、3つの最先端のLMを実証的に研究することにより、TROJAN-LMが以下の特性を持つことを示す。
論文 参考訳(メタデータ) (2020-08-01T18:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。